(7 pages)

Reg. No.:

Code No.: 7880

Sub. Code: PCHM 31

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2019.

Third Semester

Chemistry - Core

ORGANIC CHEMISTRY - III

(For those who joined in July 2017 onwards)

Time: Three hours

Maximum: 75 marks

PART A - (10 × 1 = 10 marks)

Answer ALL questions.

Choose the correct answer:

1.
$$(CH_3)_3C - Cl + O\overline{H} \xrightarrow{H_2O} (CH_3)_3C - OH + C\overline{l}$$

This is an example for — reaction.

(a) S_Ni

(b) $S_N 2$

(c) S_N1

(d) E₁

The med	e geometry of the in chanism is —————————————————————————————————	- ;	diate involved in $\mathrm{S_N}2$ and the product has
(a)	trigonal planar, in	nverte	ed
(b)	tetrahedral, reter	ntion	
(c)	trigonal planar, n	nixtur	e ,
(d)	tetrahedral, inver	ted	
Usi	ng met	hod v	we can illustrate the
(a)	¹³ C – NMR	(b)	¹H NMR
(c)	2D NMR	(d)	DEPT
The	number of H ¹ -NM	R pec	ks for p–xylene is
(a)	1	(b)	2
(c)	3	(d)	4
The	most intense peak	in ma	ss spectrum is?
(a)	metastable peak	(b)	base peak
(c)	isotopic peak	(d)	satellite peak

Page 2 Code No.: 7880

			at $m \mid z = 43$. What fragment is responsible he peak?			
		(a)	130 and 101 (b) 130 and 57			
	1	(c)	130 and 45 (d) 130 and 115			
	7.	In sigmatropic rearrangement,				
		(a)	both σ and π bonds migrate			
		(b)	only σ bond migrates			
		(c)	only π bonds migrates			
		(d)	an acyclic compound becomes a cyclic one			
8. Photolytic conversion of intonitroso alcohol is known as						
		(a)	Ritter reaction			
		(b)	Birch reduction			
		(c)	Barton reaction			
		(d)	Paterno – Buchi reaction			
	9.	9. Inoble undergo electrolytical reduction in presence of Sn/HCl to give				
		(a)	Octahydroindole (b) 3-nitro indole			
		(c)	Indigotin (d) Indoline			
			Page 3 Code No. : 7880			

The mass spectrum of 2-chloropropane has a base

6.

- 10. is found mainly in malt liquors.
 - (a) Glucose

(b) Sucrose

(c) Lactose

(d) Maltose

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 250 words.

11. (a) Describe the E₁ CB mechanism of elimination. What type of substrate undergo this elimination? What are the evidences for this mechanism.

Or

- (b) State and explain Saytzeff rule with an example.
- 12. (a) What do you mean by proton exchange reaction and explain its use?

Or

(b) Write down the principle of ¹H NMR spectroscopy.

Page 4 Code No.: 7880 [P.T.O.]

13. (a) Write in detail the general fragmentation modes in mass spectroscopy.

Or

- (b) What do you understand by base peak, isotopic peak and metastable peaks?

 Describe its importance.
- 14. (a) State Woodward Hoffmann rules and discuss their applications in pericydic reactions.

Or

- (b) Define the term photosensitization. Explain the Jablonski diagram with a neat sketch.
- 15. (a) Describe the structure of Lactose.

Or

(b) Explain the synthesis and any three important reactions of coumarins.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 600 words.

16. (a) Explain the mechanism of $S_N 1$, $S_N 2$ and $S_N i$ reactions with suitable examples.

Or

- (b) (i) Explain the mechanism of cope elimination reactions. What are the factors influencing elimination reactions?
 - (ii) Distinguish between elimination and substitution reactions.

17. (a) Define chemical shift. What are the factors that influencing chemical shift? Explain in detail.

Or

- (b) (i) Compare C^{13} spectroscopy with H^1 NMR spectroscopy.
 - (ii) Give a brief account on COSY and INADEQUATE spectra.
- 18. (a) (i) State and explain Nitrogen rule.
 - (ii) Identify the compound with molecular formula C₃H₇NO which shows.

UV : 238 nm $\,\varepsilon_{\rm max}\,$ 10500, IR : 3428(m), 2940 $\,-\,$ 2855(W), 1681(S) and 1452 cm⁻¹(W).

NMR: 1.87 τ singlet (1 H)₁ 7.30 τ singlet (3H), and 8.1 τ singlet (3H).

Or

(b) An organic compound with molecular weight 108 is not acidic in nature but can be easily oxidised to a crystalline compound (m.p: 122° C). It gives the following spectral data: UV: $\lambda_{\rm max}$ 255 $m\mu$ $\varepsilon_{\rm max}$ 202.

IR : 3402 (s, b), 306 (w), 2288 (m), 1499 (w, sh) and 1455 NMR : 2.74 τ (singlet 24.5 squares), 5.4 τ (singlet 9.5 squares) cm⁻¹(m).

Page 6 Code No.: 7880

19. (a) Describe the Norrish type-I and Norrish type-II reactions.

Or

- (b) (i) Explain the selection rule for 1,3 sigmatropic shift by thermal and photochemical process.
 - (ii) How the stereo specificity in cyclo addition reaction is explained by using FMO approach?
- 20. (a) Write the synthesis of Oxazole, Imiosazole and Anthocyanins. Explain their important reactions.

Or

- (b) (i) Describe the Pyranose and Furanose forms of aldohexoses and Ketohexoses.
 - (ii) Write the biosynthesis of Flavonoids.