Equation? Code No.: 7834 Sub. Code: PMAM14 (a) $x = 0$ (b) $y = 0$ (c) $z = 0$ (d) $e^{x} = 0$ M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2019. First Semester Mathematics ORDINARY DIFFERENTIAL EQUATIONS (For those who joined in July 2017 onwards) Time: Three hours Maximum: 75 marks SECTION A — $(10 \times 1 = 10 \text{ marks})$ Answer ALL questions. Choose the correct answer. Which of the following is the Non-Homogeneous Equation? Equation? (a) $x = 0$ (b) $y = 0$ (c) $z = 0$ (d) $e^{x} = 0$ Any point that is not ordinary point of the equation $y'' + P(x)y' + Q(x)y = 0$ is called (a) Singular point (b) Special function piont (c) Ordinary point (d) Point function 5. $P_{n} = \frac{1}{2^{n} n!} \frac{d^{n}}{dx^{n}} (x^{2} - 1)^{n}$ is called formula. (a) Legendre (b) Rodrigues (c) Binomial (d) Bessel
M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2019. First Semester Mathematics ORDINARY DIFFERENTIAL EQUATIONS (For those who joined in July 2017 onwards) Time: Three hours Answer ALL questions. Choose the correct answer. Which of the following is the Non-Homogeneous Answer All Questions Choose the following is the Non-Homogeneous 4. Any point that is not ordinary point of the equation $y'' + P(x)y' + Q(x)y = 0$ is called (a) Singular point (b) Special function piont (c) Ordinary point (d) Point function 5. $P_{-} = \frac{1}{2^{n} n!} \frac{d^{n}}{dx^{n}} (x^{2} - 1)^{n}$ is called formula. (a) Legendre (b) Rodrigues (c) Binomial (d) Bessel
NOVEMBER 2019. First Semester Mathematics ORDINARY DIFFERENTIAL EQUATIONS (For those who joined in July 2017 onwards) Time: Three hours Answer ALL questions. Choose the correct answer. Which of the following is the Non-Homogeneous Any point that is not ordinary point of the equation $y'' + P(x)y' + Q(x)y = 0$ is called (a) Singular point (b) Special function piont (c) Ordinary point of the equation $y'' + P(x)y' + Q(x)y = 0$ is called (a) Singular point (b) Special function piont (c) Ordinary point of the equation $y'' + P(x)y' + Q(x)y = 0$ is called (a) Singular point (b) Point function 5. $P'' = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n \text{ is called}$ formula. (a) Legendre (b) Rodrigues (c) Binomial (d) Bessel
First Semester Mathematics ORDINARY DIFFERENTIAL EQUATIONS (For those who joined in July 2017 onwards) Time: Three hours Maximum: 75 marks SECTION A — (10 × 1 = 10 marks) Answer ALL questions. Choose the correct answer. 1. Which of the following is the Non-Homogeneous (a) Singular point (b) Special function piont (c) Ordinary point (d) Point function 5. $P_{n} = \frac{1}{2^{n} n!} \frac{d^{n}}{dx^{n}} (x^{2} - 1)^{n} \text{ is called}$ formula. (a) Legendre (b) Rodrigues (c) Binomial (d) Bessel
Mathematics ORDINARY DIFFERENTIAL EQUATIONS (For those who joined in July 2017 onwards) Time: Three hours Maximum: 75 marks SECTION A — (10 × 1 = 10 marks) Answer ALL questions. Choose the correct answer. ORDINARY DIFFERENTIAL EQUATIONS (c) Ordinary point (d) Point function Formula. 1. Which of the following is the Non-Homogeneous (a) Legendre (b) Rodrigues (c) Binomial (d) Bessel
ORDINARY DIFFERENTIAL EQUATIONS (For those who joined in July 2017 onwards) Time: Three hours Maximum: 75 marks SECTION A — $(10 \times 1 = 10 \text{ marks})$ Answer ALL questions. Choose the correct answer. 1. Which of the following is the Non-Homogeneous (c) Ordinary point (d) Point function 5. $P_{\parallel} = \frac{1}{2^{n}} \frac{d^{n}}{dx^{n}} (x^{2} - 1)^{n}$ is called formula. (a) Legendre (b) Rodrigues (c) Binomial
(For those who joined in July 2017 onwards) Time: Three hours Maximum: 75 marks SECTION A — $(10 \times 1 = 10 \text{ marks})$ Answer ALL questions. Choose the correct answer. Which of the following is the Non-Homogeneous (d) Point function $P_{n} = \frac{1}{2^{n} n!} \frac{d^{n}}{dx^{n}} (x^{2} - 1)^{n} \text{ is called}$ formula. (a) Legendre (b) Rodrigues (c) Binomial (d) Bessel
Time: Three hours Maximum: 75 marks SECTION A — $(10 \times 1 = 10 \text{ marks})$ Answer ALL questions. Choose the correct answer. Which of the following is the Non-Homogeneous Maximum: 75 marks 5. $P_{\parallel} = \frac{1}{2^{\parallel} n!} \frac{d^{\parallel}}{dx^{\parallel}} (x^2 - 1)^{\parallel}$ is called formula. (a) Legendre (b) Rodrigues (c) Binomial (d) Bessel
Answer ALL questions. Choose the correct answer. Which of the following is the Non-Homogeneous formula. (a) Legendre (b) Rodrigues (c) Binomial (d) Bessel
Answer ALL questions. Choose the correct answer. Which of the following is the Non-Homogeneous formula. (a) Legendre (b) Rodrigues (c) Binomial (d) Bessel
Choose the correct answer. (a) Legendre (b) Rodrigues (c) Binomial (d) Bessel
1. Which of the following is the Non-Homogeneous (c) Binomial (d) Bessel
$(-)$ \cdot
(a) $a_1'' = a_1$ (d) $a_2' = a_2$
(a) Propentus (b) Rodrigues
homogeneous equation $y''+P(x)y'+Q(x)y=0$ is also
$a - \Gamma(6) = - \Gamma(6)$
(a) solution (b) equation (a) 20 (b) 120
(c) IVP (d) BVP (c) 100 (d) 40

Code No.: 7834

8.
$$\Gamma\left(\frac{5}{2}\right) = ----$$

1.32 (a)

(b) 2.32

(c)

9.

- If W(t) is the Wronskian of the two solutions of the homogeneous system then W(t) is on [a,b].
 - Never zero Identically Zero (b) (a)
 - either (a) or (b) (d)
- The system $\frac{dx}{dt} = a(t)x + f(t), f(t) = 0$ then this 10. system is called Homogeneous (b) non-Homogeneous (a)
 - non-linear (d) Wronskian (c)

SECTION B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 250 words.

(a) Solve y'' + y' = 0. 11.

Or

Find the particular solution for $y''+y=\csc x$. (b)

Prove that the equation (t-2)x''+x=0 does 12. (a) not has an ordinary point t = 2. Or

- Find the general solution for y''+y=0. (b)
- Determine the nature of Singularity of 13. (a) $f(z) = \frac{e^z}{z}.$

Or

- Discuss the nature of Singularity of $f(z) = \frac{1}{\sin(\cos z)}.$
- 14. (a) Prove that $\frac{d}{dt} [t^{-p} T_{p+1}(t)] = -[t^{-p} T_{p+1}(t)]$
 - Find the general solution of the equation $9x^2y''+9xy'+\left(9x^2-\frac{1}{4}\right)y=0.$
- Find the Wronkian value W of the equation 15. (a) $\frac{d^2y}{dx^2} + 4y = \tan 2x$

Or

Find the Complementary function for the (b) differential equation.

$$x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} - 3y = x^2 \log x.$$

Code No.: 7834 Page 4 [P.T.O.]

Code No.: 7834 Page 3

SECTION C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

- If $y_1(x)$ and $y_2(x)$ are two solutions of 16. (a) y''+P(x)y'+Q(x)y=0 on [a,b], then prove that their Wronskian $W = W(y_1, y_2)$ is either identically zero or never zero on [a,b]. Or
 - Show that $y = C_1 \sin x + C_2 \cos x$ is the general (b) solution of y''+y'=0 on any interval, and find solution for which particular the y(0) = Z and y'(0) = 3.
- Find the power series solution for the 17. equation $y' = t^2 - y^2$, y(0) = 0 for t = 0.

- Find the power series solution for the (b) equation (1 + x)y' = Py, y(0) = 1.
- the equation Consider 18. (a) $t(t-1)^{2}(t+3)x''+t^{2}x'-(t^{2}+t-1)x=0.$ Check whether the point t = 1 is the regular Singular point or not.

Or

If P_n is the Legendre polynomial, the prove that $\int_{-1}^{1} P_{n}^{2}(t) dt = \frac{2}{2n+1}$.

Consider the differential equation 19. (a) $4x^2y'' + 4xy' + \left(x - \frac{1}{36}\right)y = 0$. Set $Z = \sqrt{x}$ and

reduce the differential equation to a Bessel equation in $Z, \frac{dy}{dz}$ and $\frac{d^2y}{dz^2}$.

- (b) Prove that $P_n(1) = \frac{1}{2}n(n+1)$.
- the general solution Find 20. (a) $\frac{dx}{dt} = x + y; \frac{dy}{dt} = 4x - 2y.$

solution the general of Find (b) $\frac{dx}{dt} = 3x - 4y; \frac{dy}{dt} = x - y.$