KAMARAJ COLLEGE (Autonomous)

Accredited with A+ Grade by NAAC (Affiliated to Manonmaniam Sundaranar University, Tirunelveli) THOOTHUKUDI – 628 003

(6 Pages)	Reg. No	Reg. No:		
Question. Code No	: 25E03304	Sub Code: 24PEPH26		
PG Degree	- End Semester Ex	aminations, April 2025		
	Second Sem	iester		
	M.Sc. PHY	SICS		

Elective - Characterization of Materials (For those who joined in July 2024 onwards)

Time: 3Hours Maximum: 75 Marks

PART - A $(10 \times 1 = 10 \text{ Marks})$

Answer ALL Questions

Choose the correct answer:

1.	A substance which is commonly used as a reference materia				
	in DTA is				
	(a) Iron	(b) Alumina			
	(c) Chromium oxide	(d) None of these			

Page No: 1 Question Code: 25E03304 [P.T.O.]

- 2. In DSC, glass transition appears as
 - (a) A sharp endothermic peak
- (b) A sudden weight loss

(c) A baseline shift

- (d) A sharp exothermic peak
- 3. An image analyzer in microscopy is used for
 - (a) Viewing only
 - (b) Storing samples
 - (c) Automated quantitative measurements
 - (d) Polarized light imaging
- 4. Digital holographic microscopy provides
 - (a) Fluorescence-based contrast
 - (b) High-resolution colour images
 - (c) Quantitative phase imaging
 - (d) Electron diffraction patterns
- 5. AFM can be used to image
 - (a) Only conductive samples
 - (b) Only vacuum-stable samples
 - (c) Both conductive and non-conductive samples
 - (d) Only metals
- 6. STM operates on the principle of
 - (a) Vander waals forces
 - (b) Electrostatic attractions

Page No: 2 Question Code: **25E03304** [P.T.O.]

	(c) Quantum tunnelling of electrons					
	(d)	Thermal conductivity				
7.	Elec	Electrochemical C-V profiling is particularly useful for				
	(a)	Measuring surface roughness				
	(b)	Determining deep level traps				
	(c)	Profiling doping concentratio	n as	a function of depth		
	(d)	Measuring carrier mobility				
8.	The capacitance of a schottky barrier diode decreases w					
	increasing reverse bias due to					
	(a)	Increase in carrier concentrat	tion			
	(b)	Decrease in depletion width				
	(c)	Increase in depletion width				
	(d)	Decrease in built-in potential				
9.	ESR	I is used to detect species with				
	(a)	Zero spin	(b)	Unpaired electrons		
	(c)	Paired electrons	(d)	Neutral charge		
10.	PIXE works by irradiating samples with					
	(a)	Neutrons	(b)	Protons		
	(c)	Electrons	(d)	X-rays		

Page No: 3 Question Code: **25E03304** [P.T.O.]

$PART - B \quad (5 \times 5 = 25 \text{ Marks})$

Answer ALL Questions choosing either (a) or (b). Answer should not exceed 250 words.

11. (a) List the advantages of DSC over DTA and TGA in thermal analysis.

(OR)

- (b) Explain the basic instrumentation of a TGA.
- 12. (a) Explain the steps involved in the specimen preparation for optical microscopy.

(OR)

- (b) Write short notes on dispersion staining microscopy.
- 13. (a) What are the steps involved in TEM sample preparation? Explain.

(OR)

- (b) Compare STM with AFM.
- 14. (a) Describe the working of a Hall probe and also give its applications in semiconductor.

(OR)

- (b) Discuss the advantages of the four probe method over the two probe method in detail.
- 15. (a) Describe the instrumentation of a UV-Vis spectroscopy.

Page No: 4 Question Code: 25E03304 [P.T.O.]

(OR)

(b) Describe the basic instrumentation of XPS.

PART - C (5 X 8 = 40 Marks)

Answer ALL Questions choosing either (a) or (b). Answer should not exceed 600 words.

16. (a) Discuss the principle, working and application of DTA.

(OR)

- (b) Describe the instrumentation of DSC and explain how it is used to measure specific heat capacity.
- 17. (a) Explain the principle and working of Differential Interference contrast (DIC) microscopy.

(OR)

- (b) Compare and contrast bright field and dark field optical microscopy.
- 18. (a) Explain the working principle and instrumentation of Scanning Electron Microscopy along with its advantages.

(OR)

(b) Explain the working principle of Electron Probe Micro Analyser (EPMA). How does it differ from EDAX?

Page No: 5 Question Code: 25E03304 [P.T.O.]

19. (a) Describe the principle of photoluminescence spectroscopy. Explain how it is used to study the band gap in semiconductors.

(OR)

- (b) Explain the principle of electrochemical C-V profiling. How does it help in determining impurity concentration as a function of depth?
- 20. (a) Explain the working of FTIR spectrometer along with a neat diagram.

(OR)

(b) Describe the working principle and instrumentation of Nuclear Magnetic Resonance Spectrometer (NMR).

Page No: 6 Question Code: **25E01905**