KAMARAJ COLLEGE (Autonomous)

Accredited with A+ Grade by NAAC (Affiliated to Manonmaniam Sundaranar University, Tirunelveli)
THOOTHUKUDI – 628 003

(5 Pages) Reg.No:.....

Question. Code No: 25E03306 **Sub Code:** 24PMPH11

PG DEGREE - END SEMESTER EXAMINATIONS - April 2025

First Semester

M.Sc. PHYSICS

Major-Mathematical Physics

(For those who joined in July 2024 onwards)

Time: 3 Hours Maximum: 75 Marks

PART - A $(10 \times 1 = 10 \text{ Marks})$

Answer all questions

Choose the correct answer:

- 1. The curl of the vector field can be expressed as
 - (a) Curl A

(b) $\overrightarrow{\nabla} \times \overrightarrow{A}$

(c) $\overrightarrow{\nabla} \cdot \overrightarrow{A}$

- (d) $\overrightarrow{\nabla} \overrightarrow{A}$
- 2. The amount of flux diverging from a point per unit area per second is called

- (a) Divergence of a vector field (b) Divergence of a scalar
 - field

- (c) Curl of a vector field
- (d) Curl of a scalar field

- 3. Analytic function is
 - (a) Single valued

(b) Bounded

(c) Differentiable

- (d) None of these
- 4. Which of the following is an analytic function?
 - (a) F(z)=ReZ

(b) F(z)=Im(Z)

(c) Z

- (d) $F(z) = \sin Z$
- 5. If $A = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$ then A^{-1} will be
 - (a) $\begin{bmatrix} i & 1 \\ 0 & i \end{bmatrix}$

(b) $\begin{bmatrix} i & 0 \\ 1 & 1 \end{bmatrix}$

(c) $\begin{bmatrix} 1 & 0 \\ 0 & -i \end{bmatrix}$

- (d) $\begin{bmatrix} 1 & i \\ 0 & -i \end{bmatrix}$
- 6. From the following type of matrix, the diagonal elements of which matrix must be pure imaginary numbers or zero
 - (a) Skew Hermitian

(b) Symmetric

(c) Hermitian

- (d) Skew symmetric
- 7. Laplace transform of e-at
 - (a) $\frac{1}{1-s}$

(b) $\frac{1}{s}$

(c) $\frac{1}{s-a}$

(d) 1

- 8. Which of the following is a even function?
 - (a) X^3

(b) Sinx

(c) Tanx

(d) Cosx and secx

- 9. The value of $J_{-1/2}(\frac{\pi}{2})$
 - (a) 0

(b) 1

(c) $\frac{\pi}{2}$

- (d) 2
- 10. The Generating function of Hermite polynomial is
 - (a) e^{2zx-x^2}

(b) e^{-zx-x^2}

(c) e^{-zx-x^2}

(d) e^{zx-x^2}

PART – B $(5 \times 5 = 25 \text{ Marks})$ Answer all questions choosing either (a) or (b). Answer should not exceed 250 words.

11. (a) Check whether the vectors are linearly dependent or Independent [1,2,4], [1,0,0], [0,1,0][0,0,1]

(OR)

- (b) Explain Schmidt's orthogonalization procedure.
- 12. (a) Check whether w = f(z) = Sinz is analytic or not.

(OR)

(b) Find the Laurent series function of $F(z) = \frac{1}{(1-z^2)}$ with centre at z=1.

13. (a) State and prove Cayley Hamilton theorem.

(OR)

- (b) Find the Eigen values and Eigen vectors of the following Matrix. $\begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{bmatrix}$
- 14. (a) Give any two properties of Fourier transform.

(OR)

- (b) Find the inverse Laplace transform of $\frac{1}{(s+1)(s^2+1)}$.
- 15. (a) Show that $\int_{-1}^{+1} P_{m(x)} P_{n(x)} dx = 0$

(OR)

(b) Show that $H_n(-x) = (-1)^n H_n(x)$.

PART - C
$$(5 \times 8 = 40 \text{ Marks})$$

Answer all questions choosing either (a) or (b). Answer should not exceed 600 words.

16. (a) Find a unit vector perpendicular to the surface $x^2+y^2-z^2=11$ at the point (4,2,3).

(OR)

(b) What is linear vector space? Give any three examples of linear vector space.

17. (a) Derive Cauchy integral formula.

(OR)

- (b) Find the residues of $\frac{Ze^{iz}}{z^4+a^4}$ at its poles.
- 18. (a) Find the eigen values and eigen vectors of the matrix

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

(OR)

(b) Find the characteristic equation of the following matrix and verify Cayley- Hamilton's theorem.

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & 1 \end{pmatrix}$$

19. (a) Define Dirac delta function. Prove that $x \delta(x)=0$, where $\delta(x)$ is dirac delta function.

(OR)

- (b) Find the Laplace transform of $\frac{sinat}{t}$. Does the transform of $\frac{cosat}{t}$ exist?
- 20. (a) Derive the generating function of Hermite polynomial.

(OR)

(b) Obtain the power series solution of Legendre differential Equation.

Page No: 5

Question Code No: 25E03306