KAMARAJ COLLEGE (Autonomous)

Accredited with A+ Grade by NAAC
Affiliated to Manonmaniam Sundaranar University
THOOTHUKUDI – 628 003

5 Pages	Reg. No:
---------	----------

Question. Code No: 2400331 Sub Code: 24PMPH11

PG Degree - End Semester Examinations, November 2024
First Semester

M.Sc. Physics

Major - MATHEMATICAL PHYSICS

(For those who joined in July 2024 onwards)

Time: 3 Hours Maximum: 75 Marks

PART A - $(10 \times 1 = 10 \text{ Marks})$

Answer ALL Questions Choose the correct answer

- 1. $\nabla \log r$ will be equal to
 - (a) \vec{r}

(b) $\frac{\vec{r}}{n}$

(c) $\frac{\vec{r}}{r^2}$

- (d) $\frac{\vec{r}}{r^4}$
- 2. If a is a constant vector, then $\vec{r} \times \vec{a}$ is

Page No 1 Question Code No.: **2400331** [P.T.O]

(a) solenoidal

- (b) irrotational
- (c) Both solenoidal and (d) irrotational
 - Neither solenoidal nor irrotational
- Taylor's series expansion of tanz about z=0 is 3.
 - (a) $1-\frac{z}{2}-\frac{z^2}{10}+\cdots$
- (b) $1+\frac{z}{2}-\frac{z^2}{19}+\cdots$
- (c) $1+\frac{z}{2}+\frac{z^2}{18}+\cdots$
- (d) $1-\frac{z}{2}+\frac{z^2}{18}+\cdots$
- Analytic function is
 - (a) Single valued
- (b) bounded
- (c) differentiable
- (d) All of these
- 5. If $A = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$ then A^{-1} will be

 (a) $\begin{bmatrix} i & 1 \\ 0 & i \end{bmatrix}$ (b)

 (c) $\begin{bmatrix} 1 & 0 \\ 0 & -i \end{bmatrix}$ (d)

(b) $\begin{bmatrix} i & 0 \\ 1 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & i \\ 0 & -i \end{bmatrix}$

- Inverse of the matrix exists if
 - (a) Matrix is singular
- (b) Matrix is non-singular
- (c) Matrix is Hermitian
- (d) Matrix is skew Hermitian
- L{f(at)} will be equal to
 - (a) $\frac{1}{2}f(\frac{s}{a})$

(b) $\frac{1}{a}f(\frac{s}{a})$

 $\frac{1}{a}f(s)$

- (d) $af(\frac{s}{a})$
- The Laplace transform of sinh at, is if s>a
 - (a) $s^2 a^2$

(b) $\frac{a}{s^2 - a^2}$

 $(c) \frac{1}{s^2 - a^2}$

- $\frac{a}{s^2 + a^2}$
- The value of $P_{2m+1}(0)$ is
 - (a) 0

(b) 1

(c) $\frac{\pi}{2}$

- (d) None of above
- 10. $H_n(-x)$ will be equal to
 - (a) $(-1)^n H_n(x)$

(b) $H_n(x)$

(c) $-H_n(x)$

(d) Zero

PART B - (5X5=25Marks)

Answer ALL Questions choosing either (a) or (b).

(Answer should not exceed 250 words.)

11. (a) Define Bra and Ket notation.

(OR)

- (b) Check whether the vectors are linearly dependent or Independent [1,2,4], [1,0,0], [0,1,0][0,0,1]
- 12. (a) Derive Cauchy's Integral formula

(OR)

- (b) Find the residue of $f(z) = \frac{e^z}{z^2 + a^2}$ at it singularities
- 13. (a) Find the Eigen values and Eigen values of the Matrix

$$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

(OR)

- (b) Find the rank of the matrix $\begin{bmatrix} 2 & 1 & -1 \\ 0 & 3 & -2 \\ 2 & 4 & -3 \end{bmatrix}$
- 14. (a) Give any two properties of Fourier Transform (OR)
 - (b) Find the inverse Laplace Transform of $\frac{1}{\sqrt{(2s+5)}}$
- 15. (a) Prove that $H_n'(x)-2nH_{n-1}(x)$

(OR)

(b) Prove that $P_{2m+1}(0)=0$

PART C - $(5 \times 8 = 40 \text{ Marks})$

Answer ALL Questions choosing either (a) or (b).

(Answer should not exceed 600 words.)

16. (a) What is linear vector space? Give any three examples of linear vector space.

(OR)

- (b) Check the following vectors are linearly dependent or independent (1,2,-3) (2,5,1) (-1,1.4)
- 17. (a) Check whether the following are analytic functions of complex variable.

i)
$$f(z) = \sin z$$
 ii) $f(z) = R_e z$ (OR)

- (b) Define Isomorphic and homomorphic groups. Give any two properties.
- 18. (a) Find the characteristic equation of the following matrix and verify cayleyHamilton theorem.

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & 1 \end{bmatrix}$$

(OR)

- (b) Show that the
 - (i) All the eigen values of a Hermitian matrix are real and
 - (ii) The eigen vectors corresponding to distinct eigen values corresponding to distinct eigen values are orthogonal.

19. (a) Obtain Laplace transform of the function f(t)= sinh at sin at

(OR)

- (b) Give the properties of Inverse Laplace transform.
- 20. (a) Derive the orthogonal property of Hermite polynomial

(OR)

(b) Give the orthogonal property of legendre polynomial $\int_{-1}^{+1} P_{m(x)} P_{n(x)} dx = 0 \quad \text{for } m \neq n$ $\int_{-1}^{1} [p_n(x)]^2 dx = \frac{2}{2n+1}$

Question Code No.: 2400331