KAMARAJ COLLEGE (Autonomous)

Accredited with A+ Grade by NAAC (Affiliated to Manonmaniam Sundaranar University, Tirunelveli)
THOOTHUKUDI – 628 003

(6 Pages) Reg. No:

Question Code No: 25003308 Sub Code: 24PMPH22

PG Degree - End Semester Examinations, November 2025

Second Semester

M.Sc. PHYSICS

Quantum Mechanics - I

(For those who joined in July 2024 onwards)

Time: 3 Hours Maximum: 75 Marks

PART - A (10 X 1 = 10 Marks)

Answer ALL Questions

Choose the correct answer:

- 1. In general, the solution of Schrodinger wave equation is
 - (a) Real

(b) Imaginary

(c) Complex

- (d) All the above
- 2. What are the possible measured values of observable A called?
 - (a) Functions of A
- (b) Eigenvalues of A

Page No: 1 Question Code No.: **25003308** [P.T.0]

	(c)	Eigenfunctions of A	(d)	Operators of A									
3.	In	Schrodinger picture, th	ie w	avefunctions are time									
	dependent and while are time independent.												
	(a)	Operators	(b)	Wavefunctions									
	(c)	Eigen values	(d)	Energy									
4.	If a system in a bound state has energy (E) and potential												
	(v)) then											
	(a)	E <v< td=""><td>(b)</td><td>E>V</td></v<>	(b)	E>V									
	(c)	E=V	(d)	None of those									
5.	Which assumption is central to the rigid rotator model?												
	(a)	Distance between two mass is constant											
	(b)	Molecule vibrates during rotation											
	(c)	c) The system is relativistic											
	(d)	(d) Potential energy depends on orientation											
6.	When there is one to one correspondence between the												
	wave function and energy, it is called												
	(a)	Degenerate state	(b)	Non degenerate state									
	(c)	Symmetric potential	(d)	none									
7.	The splitting of energy levels of an atom by applying												
	uni	form external electric fiel	d is										
	(a)	Zeeman effect	(b)	Stark effect									

Page No: 2 Question Code No.: 25003308 [P.T.0]

	(c) Anomalous effect			fect	(d)	Meissner effect							
8.	Wha	at is the	deg	eneracy	of the	first	excited	state	of				
hydrogen atom in stark effect?													
	(a)	One – fo	ld		(b)	Two-	fold						
	(c)	Three-fo	old		(d)	Four-	fold						
9.	Pau	li spin ma	atrice	W	with each other.								
	(a)	Commu	te		(b)	Anti-	commute	е					
	(c)	Linear			(d)	None							
10.). The operators $J_{\scriptscriptstyle +}$ and $J_{\scriptscriptstyle -}$ act as Ladder operators wh												
	resp	ectively		1	the eig	en va	lues of	angu	lar				
	mor	nent ope	rator	Jz.									
	(a)	Lower and raise			(b)) Raise and lower							
	(c)	Lower a	nd lo	wer	(d)	None							
PART - B (5X5=25 Marks)													
Answer ALL Questions choosing either (a) or (b). Answer should not exceed 250 words.													
l 1.	(a)	What i	s a	wave	packet	? Giv	e the	physi	cal				
significance of a well behaved wave function.													
				(0	OR)								
	(b) Show that the eigen values of a Hermitian open												
		are real.											

Page No: 3 Question Code No.: **25003308** [P.T.O]

12. (a) Deduce the equation of motion using Heisenberg picture.

(OR)

- (b) Discuss the effect of time reversal in the time dependent Schrodinger equation.
- 13. (a) Analyze the square well potential barrier problem and its significance.

(OR)

- (b) Obtain the eigen value and eigen functions of the rigid rotator.
- 14. (a) Describe the first order stark effect in Hydrogen atom.

(OR)

- (b) Outline the connection formulas of WKB approximation method.
- 15. (a) Describe the spin angular momentum and show that how will you arrive at Pauli's spin matrices.

(OR)

(b) State the commutation relations obeyed by the components of angular momentum and express them in vector notation.

PART - C (5 X 8 = 40 Marks)

Answer ALL Questions choosing either (a) or (b). Answer should not exceed 600 words.

16. (a) Deduce the expression for Schrodinger time dependent wave equation for a matter wave in one dimension.

(OR)

- (b) State and prove Ehrenfest's theorem.
- 17. (a) Develop the equation of motion of Schrodinger picture.

(OR)

- (b) Explain the effect of parity operator on the observables r, p and L.
- 18. (a) Derive the Schrodinger equation and the form of wave function in the different regions of a square well potential with rigid wall.

(OR)

- (b) Illustrate the matrix theory of linear harmonic oscillator using operator method.
- 19. (a) Estimate the ground state energy of helium atom.

(OR)

Page No: 5 Question Code No.: **25003308** [P.T.0]

- (b) Using the first order perturbation theory, discuss the effect of an electric field in the energy level of the hydrogen atom.
- 20. (a) Explain in detail about Clebsch-Gordan (CG) coefficients.

(OR)

(b) Find the eigen value of J^2 and J_z .

Question Code No.: 25003308

Page No: 6