KAMARAJ COLLEGE (Autonomous)

Accredited with A+ Grade by NAAC (Affiliated to Manonmaniam Sundaranar University, Tirunelveli)
THOOTHUKUDI – 628 003

(5 Pages) Reg. No:

Question Code No: 25003301 **Sub Code:** 24PMPH31

PG Degree - End Semester Examinations, November 2025

Third Semester

M.Sc. PHYSICS

Quantum Mechanics II

(For those who joined in July 2024 onwards)

Time: 3 Hours Maximum: 75 Marks

PART A – $(10 \times 1 = 10 \text{ Marks})$

Answer ALL Questions Choose the correct answer:

- 1. The unit of differential scattering cross-section is
 - (a) length

(b) \sqrt{length}

(C) (length)²

- (d) (length)³
- 2. The optical theorem relates the total cross-section and the imaginary part of

Page No: 1 Question Code No.: **25003301** [P.T.0]

	(a) Time	(b) Scattering amplitude
	(c) Charge	(d) None of the above
3.	In the given relation H	=H ⁰ +H' which is unperturbed
	Hamiltonian	
	(a) H	(b) H'
	(c) H^0	(d) None of the above
4.	Fermi's Golden rule relates	the ω and
	(a) $\rho(E)$	(b) ρ^3
	(c) ρ ²	(d) ρ^4
5.	What is the dimension of D	irac matrix?
	(a) Odd	(b) Even
	(c) Sometimes odd	(d) Sometimes even
6.	The antiparticle of electron	nis
	(a) Positron	(b) Antinutrino
	(c) Nutrino	(d) Proton
7.	The γ matrices are	
	(a) Hermitian	(b) Invariant under
		Lorentz transformation
	(c) Anti commute	(d) All the above
8.	Find the trace of the given	matrix $\beta = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
	(a) 1	(b) 4

	(C)	2 ((d)	3			
9.	9. For the system of fermions the value of N_k =						
	(a)	0 ((b)	1 or 0			
	(C)	1 ((d)	2			
10	. The	The number operator $N_{\rm k}$ is represented as					
	(a)	aa† ((b)	a			
	(c)	a [†] ((d)	a *			
PART - B (5 X 5 = 25 Marks)							
Answer ALL Questions choosing either (a) or (b).							
Answer should not exceed 250 words.							
11.	(a)	Discuss about Yukawa po	ten	tial.			
		(OR)				
	(b)	What is the condition of v	ralio	dity of Born approximation?			
12.	(a)	Discuss about harmonic p	ert	curbation.			
		(OR)				
	(b)	Outline adiabatic approxi	ma	tion.			
13.	(a)	Derive an expression for 1	Kle	in -Gordon equation.			
		(OR)				
	(b)	Write about negative ene	rgy	states.			

14. (a) Write any four properties of γ matrices.

(OR)

- (b) Describe the covariant form of Dirac equation.
- 15. (a) Write about Lagrangian density.

(OR)

(b) Derive an expression for creation and annihilation operators.

$PART - C \quad (5 \times 8 = 40 \text{ Marks})$

Answer ALL Questions choosing either (a) or (b).

Answer should not exceed 600 words.

16. (a) Discuss about scattering by screened Coulomb potential.

(OR)

- (b) Explain the method of partial wave analysis in scattering theory.
- 17. (a) Outline Sudden approximation.

(OR)

- (b) Describe the selection rules for dipole radiation.
- 18. (a) Find the plane wave solution to the Dirac equation.

(OR)

- (b) Explain the spin of electron based on Dirac theory.
- 19. (a) Derive an expression for probability density.

(OR)

- (b) Explain Feynan's theory of positron.
- 20. (a) Derive an expression for classical field equation.

(OR)

(b) Derive Euler- Lagrange equation.

Page No: 5 Question Code No.: 25003301