(6 pages)	Reg. No. :	2.	The self inductance of	f a straight conductors is
Code No. : 20036 E	Sub. Code: AMPH 41		(a) zero	(b) infinity
B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2025.			(c) very large	(d) very small
Fourth Semester		3.	Which of the following equations represents	
Physics — Core			Biot-Savort law?	
ELECTROMAGNETISM			(a) $dB = \frac{\mu_0}{4\pi} \frac{Idl}{r^2}$	(b) $\overline{dB} = \frac{\mu_0}{4\pi} \frac{Idl \sin \theta}{r^2}$
(For those who joined in July 2020 only)		4	3/1 /	47.
Time: Three hours	Maximum: 75 marks		(c) $\overrightarrow{dB} = \frac{\mu_0}{4\pi} \frac{I \overrightarrow{dl} \times \overrightarrow{r}}{r^2}$	(d) $\overline{dB} = \frac{\mu_0}{4\pi} \frac{I\overline{dl} \times \overline{r}}{r^3}$
PART A — $(10 \times 1 = 10 \text{ marks})$		4.	The S.I unit magnetic flux density	
Answer A	LL questions.			as sub/
Choose the correct a	nswer:	*	(a) T	(b) wb/m^3
Lenz's law is in acco (a) conservation of conservation.	rdance with the law of		(c) wb	(d) $\frac{wb}{m}$
(b) conservation flu		5.	Unit of magnetisation l	M is
(c) conservation of i	*		(a) Am	(b) Am ⁻³
(d) conservation of e	energy	140		* E
	* ************************************		(c) Am ⁻¹	(d) Am ⁻²

Page 2 Code No.: 20036 E

6.	Velocity of plane electromagnetic wave in vaccum	10. Change sensitivity of B.G is		
10	is	(a) V_{div} (b) A_{div}		
	(a) $C = \sqrt{\mu_0 / \Sigma_0}$ (b) $C = \sqrt{\mu_0 \Sigma_0}$	(c) C_{div} (d) J_K		
	(c) $C = \frac{1}{\sqrt{\mu_0 \Sigma_0}}$ (d) $C = \sqrt{\frac{\Sigma_0}{\mu_0}}$	PART B — $(5 \times 5 = 25 \text{ marks})$		
7.	Refractive index of a medium is	Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 250 words.		
	(a) $\sqrt{\frac{\mu_r}{\Sigma_r}}$ (b) $\sqrt{\frac{\Sigma_r}{\mu_r}}$	11. (a) What are eddy currents? Give their applications.		
	(c) $\frac{1}{\sqrt{\mu_r \Sigma_r}}$ (d) $\sqrt{\mu_r \Sigma_r}$	Or		
	$V^{\mu_r \leftarrow_r}$	(b) Obtain an expression for the self-inductance		

9. The horizontal component of earth magnetic induction of our place is about

(a) $0.38 \times 10^{-3} \text{ T}$

Brewsters law is ___

(a) $\mu = \sin i_p$

(c) $\mu = \tan i_p$

8.

(b) $0.38 \times 10^{-4} \text{ T}$

(b) $\mu = \cos i_p$

(d) $\mu = \frac{1}{\tan i_p}$

(c) $1.38 \times 10^{-4} \text{ T}$

(d) 0.38T

Page 3 Code No.: 20036 E

(b) State and explain Ampere's circuital law.

(a) Applying Ampere's circuital law find the

magnetic induction due to a long solenoid.

13. (a) Explain the boundary conditions for electric field intensity (E).

Or

of a long solenoid.

O

(b) Obtain the relation between μ , B and H.

Page 4 Code No.: 20036 E [P.T.O.]

14. (a) Write a note on monachromatic plane wave.

Or

- (b) Derive the wave equation for electric field in a non-conducting medium.
- 15. (a) Write a short notes on earth inductor.

Or

(b) What are the application of induction coil?

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 600 words.

16. (a) Determine the mutal inductance between a pair of coils.

Or

- (b) Describe the theory of Rayleigh's method of finding self inductance of a coil.
- (a) Describe the theory of moving coil bullistic Galvanometer.

Or

(b) Explain about Desauty's Bridge how it is used for comparison of capacitance of two capacitors.

Page 5 Code No.: 20036 E

18. (a) Derive an expression for poynting vector.

Or

- (b) Derive the Maxwells equation for material media.
- 19. (a) Discuss the reflection and transmission of electromagnetic wave at a dielectric boundary for oblique incidence.

Or

- (b) Explain the polarization of electromagnetic waves by reflection.
- 20. (a) Describe an induction coil and explain its working.

Or

(b) Describe how the earth inductor can be used to determine earth's horizontal field induction at a place.

Page 6 Code No. : 20036 E