(6 pages)	Reg. No. :	<u>.</u>	3.	The e	expression A	$+\overline{A}B+\overline{A}\overline{B}$	\overline{B} can be simplified a
Code No. : 30	308 E Sub. Cod	le : AMPH 62	,	(a) A (c) 1	9	(b)	0
B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2024.				The inputs of a logic gate has inputs 0 and 1, the output will be zero if it is a			
	Sixth Semester	g. ÷	. *	(a) X	OR gate	. (b)	OR gate
a a	Physics — Core		" II x	(c) A	ND gate	(d)	NAND gate
DI	GITAL ELECTRONICS		5.	The to	wo outputs of	RS-flip fl	lop are
(For those	who joined in July 202	20 only)		(a) al	lways low	(b)	always high
Time : Three hour	s Maxin	num : 75 marks	41 19 19	(c) lo	ow or high	(d)	complementary
PAR'	$\Gamma A - (10 \times 1 = 10 \text{ mar})$	ks)	6.	A half	f adder	24	
Answer ALL questions.				(a) a	dd two bits		
Choose the	correct answer:			(b) a	dd three bits	ĸ	
1. The grey co	de of 13 is		- 2	(c) pe	erform decima	al additio	n
(a) 1111	(b) 1000			(d) h	as one output		14
(c) 1101	(d) 1011	w v t	7.	Thom		12. 6	
2. The decima	number 2 in binary	*	Ma . r	map i		is in a to	ur variable Karnaug
(a) 00100	(b) 00010			(a) 8		(b)	A
(c) 01000	(d) 00110		. 25	(c) 35		(d)	
		4		(0)		()	Code No. : 30308

8. A demultiplexer has outputs.		input and many		(b)	(i) Express decimal number 5280 in excess-foode.		
	(a) 2 (c) 3	(b) 1 (d) 4		•;	(ii) Convert gray number 11011 to its BCL equivalent.		
9.	A 6FF counter is a (a) mod-6 counter (c) mod-8 counter	(b) mod-64 counter (d) mod-36 counter	12.		$ABCD + ABC\overline{D} + \overline{A}BCD + \overline{A}BC\overline{D}$. Or		
10.	ABCD counter has (a) 3 distinct states	·		(b)	(i) Give the truth table of EX-OR gate.(ii) State the two de-Morgan's theorem.		
	(b) 8 distinct states	13.	(a)	Describe RS flip-flop with diagram.			
	(c) 10 distinct states				Or		
	(d) 16 distinct states	= 3 ₅	e 4	(b)	Describe JK flip-flop with diagram.		
	PART B — (5 ×	5 = 25 marks)	14.	(a)	Explain Karnaugh map.		
Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 250 words.				(b)	Or) Differentiate multiplexer and demultiplexer.		
11.	(a) (i) Convert 10 equivalent.	101 ₂ into its decimal	15.	(a)	Discuss Mod-5 counter.		
		nto binary number.		(b)	Or Explain the term Ring Counter.		
	O. Pag	The second secon			Page 4 Code No. : 30308 E [P.T.O.		
		• -					

[P.T.O.]

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b) Each answer should not exceed 600 words.

- (a) (i) Explain binary addition and binary subtraction with examples.
 - (ii) Explain with examples of hexa-decimal and BCD number system.

Or

- (b) (i) Convert decimal 72905 into hexadecimals and binary equivalents.
 - (ii) Convert gray number 110101 into binary form.
 - (iii) What is the 2's complement of 10010 10011?
- 17. (a) Use Boolean algebra to prove AB + BC + CA = (A + B)(B + C)(C + A).

Or

(b) Give the circuit and truth table of NAND, NOR, EX-OR and EX-NOR gates.

Page 5 Code No.: 30308 E

18. (a) Explain SOP using NAND and NOR gates.

Or

- (b) Explain the K-map with three variables.
- 19. (a) Explain the construction and working of a full adder.

Or

- (b) Explain the action of a JK-flip-flop with diagram and truth table.
- (a) Discuss the operations of D/A converter with binary ladder.

Or

(b) Explain the action of Up/down counter with a neat diagram.

Page 6 Code No.: 30308 E