Code No. : 20042 E	Sub. Code: AMPH 63		(a) 8 (b) 6	
B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2025.			(c) 12 (d) Varies for differe	nt metal
Sixth Semester		3.	Madelung's constant	
Physics - Core			(a) 2.487	(b) 1.748
SOLID STATE PHYSICS			(c) 4.872	(d) 3.872
(For those who joined in July 2020 only)		4.		to separate 1 mole of sodium ous Na+ and Cl- ions is
Time : Three hours	Maximum: 75 marks		()	A) non WI
PART A — $(10 \times 1 = 10 \text{ marks})$			(a) 226 KJ(c) 686 KJ	(b) 386 KJ (d) 786 KJ
Answer ALL questions.		5.	Dielectric materials d	o not have .
Choose the correct answer:		^ .	(a) Proton(c) Bound charge	(b) Neutron(d) Free electrons
 If the atomic radius of aluminium (FCC) in r, what is the unit cell volume? 		6.	In which of the following the magnetic moments allign themselves parallel to each other?	
(a) $\left(2r/\sqrt{2}\right)^3$	(b) $(4r/\sqrt{2})^3$		(a) Paramagnetic ma	
(c) $\left(2r/\sqrt{3}\right)^3$	(b) $(4r/\sqrt{2})^3$ (d) $(4r/\sqrt{3})^3$	-	(b) Ferromagnetic m(c) Ferrimagnetic mat(d) Diamagnetic mat	aterial

Reg. No.:

2.

Co-ordination number for an ideal BCC metallic

Page 2 Code No.: 20042 E

(6 pages)

7.	In superconductivity, the electrical resistance the material becomes			
	(a) Finite (b) Infinite			
	(c) Zero (d) All the above			
8.	The cooper pair is			
	(a) two electrons moving in the same direction			
	(b) two electrons with resultant spin zero			
	(c) two electrons connected like a boson			
	(d) two electrons connected through a phonon			
9.	Graphene is a			
	(a) Honeycomb sheet of carbon atoms			
	(b) Nanoscale cube of random atoms			
	(c) Invisible plastic membrane			
	(d) Graphite in a 6B pencil			
10.	A fullerene is any molecule composed entirely of the carbon not in the form of hollow			
	(a) Sphere (b) Tube			
	(c) Ellipsoid (d) Cuboid			
	Page 3 Code No.: 20042 E			

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 250 words.

11. (a) Derive Bragg's law of diffraction.

Or

- (b) Explain the seven classes of crystals.
- 12. (a) Deduce the energy of NaCl molecule.

0r

- (b) Explain the variation of interatomic force with inter atomic spacing.
- 13. (a) Explain antiferromagnetism with example.

Or

- (b) Derive the expression for electronic and ionic polarization.
- 14. (a) Describe Meissner effect and persistent current in a superconductor.

Or

(b) Write the applications of AC and DC Josephson effect.

Page 4 Code No. : 20042 E [P.T.O.]

15. (a) Write the properties and application of carbon nano tubes.

Or

(b) Explain the synthesis of nanoparticles by electro deposition method.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 600 words.

16. (a) Describe the characteristics of hexagonal close packed structure.

Or

- (b) Define miller indices. Write the procedure for finding miller indices with example.
- 17. (a) Define cohesive energy. Find the cohesive energy of ionic solids and apply it to NaCl.

Or

- (b) Explain the different types of bond in crystals.
- 18. (a) Define internal field and hence derive Clausius Mossotti relation.

Or

(b) Explain Langevin's theory of para magnetism.

Page 5 Code No.: 20042 E

19. (a) Derive London equations in superconductors.

Or

- (b) Explain high temperature super conductors.
- 20. (a) Explain the ball milling method of preparing nano particles.

Or

(b) Describe chemical vapour deposition method of preparation of nano partocles.

Page 6 Code No.: 20042 E