(6 pages)	Reg. 1	No.:		2.	In a Huygen's eye piece	minimum.
Code No.: 30451 E Sub. Code: CMPH 21 B.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2024			21		(a) spherical aberration only	
					(b) chromatic aberration only(c) both spherical and chromatical	
	Second Semester				(d) none	
Physics — Core OPTICS AND ACOUSTICS				3.	The path difference for construction $(n = 0, 1, 2,)$	ctive interference is
(For those who joined in July 2021 and 2022 only)					(a) $(n+1)\lambda/3$ (b)	$(n+1)\lambda/2$
Time : Tl	aree hours	Maximum: 75 ma	rks		(c) $n\lambda$ (d) r	none
	PART A — (10	\times 1 = 10 marks)		4.	In an air-wedge, fringe width (β) is
	Answer AL	L questions.	4		(a) constant	
	Choose the co	prirect answer.	4		(b) increasing from left	
1. The condition for minimum spherical aberration for two lenses separated by a distance (α) is			ion		(c) increasing from right	4
		ed by a distance (α) is			(d) none	
(a) (b)	$\alpha = f_1 + f_2$ $\alpha = f_1 - f_2$			5.	In a Fraunhofer diffraction, the waves.	incident waves are
(c)	$\alpha = \frac{f_1 + f_2}{2}$				(a) Plane (b) S	Spherical
(d)	None	·	* .		(c) Elliptical (d) 1	None
		in the second	ж .		Page 2 Co	ode No. : 30451 E
				•	¥	

	(a) $\lambda/4$ (b) $\lambda/2$ (c) $\lambda/3$ (d) $\pi/2$	Answer ALL questions choosing either (a) or (b). Each answer should not exceed 250 words.
7.	The loudness of sound is measured in	11. (a) Define dispersion. Explain dispersion of light by a prism.
	· · · · · · · · · · · · · · · · · · ·	Or
	(a) decibel (b) pascal	(b) Explain the working of constant deviation
	(c) coulomb (d) none	spectrometer.
8.	In simple harmonic motion the acceleration is proportional to the displacement	12. (a) Explain the testing of plainness of a glass surface using air wedge.
	from central position.	\mathbf{Or}
	(a) directly (b) inversely	(b) What are the applications of Michelson interferometer?
	(c) constant (d) none	13. (a) Distinguish between Fresnel and Fraunhofer
9.	Ultrasonic waves have energy.	13. (a) Distinguish between Fresnel and Fraunhofer diffractions.
	(a) low (b) high	Or
*:	(c) zero (d) negative	(b) Explain the production of circularly polarized light.
10.	Ultrasonic waves produce effect when passed through a substance.	14. (a) What are the free and damped vibrations? Give example for each case.
	(a) cooling (b) heating	\mathbf{Or}
	(c) magnetic (d) electric	(b) State and explain the laws of transverse vibrations of strings.
	Page 3 Code No.: 30451 E	Page 4 Code No. : 30451 E [P.T.O.]

6.

A half wave plate produces a path difference of

PART B — $(5 \times 5 = 25 \text{ marks})$

(a) Explain any two applications of ultrasonic waves.

0r

(b) Give any five factors which are affecting the acoustics of buildings.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions choosing either (a) or (b). Each answer should not exceed 600 words.

16. (a) Explain any two aberration in lenses. How they are removed?

Or

- (b) Explain deviation, without dispersion. How can it be achieved using small angled prisms?
- (a) Explain the experimental determination of thickness of thin wire using air-wedge.

Or

(b) Explain the interference in their films due to reflected light.

Page 5 Code No.: 30451 E

 (a) Describe the theory of Fresnel diffraction due to a circular aperture.

Or

- (b) Give the construction and theory of(i) Quarter wave plate and (ii) Half wave plate.
- 19. (a) Explain frequency of vibration of string and the laws of transverse vibration of strings.

Or

- (b) Explain the determination of a.c. frequency using sonometer.
- 20. (a) Explain the production of ultrasonic waves by piezo-electric method.

Or

(b) Derive Sabine's formula for the reverberation time.

Page 6 Code No. : 30451 E