(6 pages)	Reg. No. :	2.	W.	ich of the fallow	ring is not	a scalar"	
			(3)	Viscosity	(35)	Surface tension	
Code No. : 2	0599 E Sub. Code: EMPH 11		(6)	Photothio	(B)	Stress	
B.Sc. (CBCS) DE	EGREE EXAMINATION, APRIL 2025.	3.	Considering depression (S) at the leaded end of a cantilever, the depression at half the length of the cantilever is				
		(a)		(6)	5/8		
					5/4		
PROPERTIE	4.		S/2			j) 18	
(For those t	٠,	In non-uniform bending the depression (δ) is related to thickness (d) of the beam by					
Time: Three hours Maximum: 75 marks			(a)	δad	(b)	$\delta \alpha \frac{1}{d}$	
PAR	$TA - (10 \times 1 = 10 \text{ marks})$					5,60	
1	Answer ALL questions.		(c)	$\delta \approx \frac{1}{d^2}$	(d)	$S \propto \frac{1}{d^3}$	
Choose the	5.	The unit for surface tension is					
	is stretched to double of its original		(a)	Nm^{-3}	(b)	Nm^{-1}	
length, ther		(c)	Nm^3	(d)	N^2m		
(n) 1.		6.	Sto	kes formula F			
(h) 2	G,		6πηαν		$6\pi\eta/aV$		
(c) 3							
(d) 4			(c)	$\pi \eta / 6aV$	(0)	$\pi \eta / V$	

(6 pages)

(d) 4

Page 2 Code No. : 20599 E

(c)	$-w^2/y$	(d)	w^2/y					
The	frequency	is 'related	to time	period	by			
(a)	$f = \frac{1}{T}$	(b)	f = T					
(c)	$f = \sqrt{T}$	(d)	$f = \frac{1}{\sqrt{T}}$					
	reverberat				to			
(a)	directly pro	portional						
(b)	inversely proportional							
(c)	equal							
(d)	none			- 1				
The	frequency	range of a	udible so	und wa	ves			

In simple harmonic motion, the acceleration (a) =

(a) w^2y

(a) below 20 Hz

(c) 20 Hz to 2000 Hz

(b) $-w^2 y$

(b) above 2000 Hz

(d) 20 Hz to 200 Hz

Page 3 Code No.: 20599 E

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 250 words.

11. (a) Describe the three elastic modulii.

Or

- (b) A wire of length 2m with the area of cross section $10^{-6} m^2$ is used to suspend a load of 980N. Calculate the stress and strain developed in the wire. $(Y = 12 \times 10^{10} \ N/m^{-2})$
- (a) Derive the expression for the bending moment of beam.

Or

- (b) Derive the expression for time period of the cantilever.
- (a) Obtain an expression for the excess of pressure inside a (i) liquid drop (ii) liquid bubble (ii) air bubble.

Or

(b) Explain the variation of viscosity of a liquid with temperature.

> Page 4 Code No. : 20599 E [P.T.O.]

14. (a) Explain in detail of forced vibrations.

Or

- (b) Write a note on resonance and sharpness of resonance.
- (a) Define intensity of sound and loudness of sound.

Or

(b) Describe the applications of ultrasonic waves.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 600 words.

 (a) Derive the relation between three elastic moduli.

Or

- (b) Explain the determination of rigidity modulus using torsion pendulum. (without masses)
- 17. (a) Describe the pin and microscope experimental for the determination of young's modulus of a beam by uniform bending method.

Or

(b) Derive the expression for the depression of a cantilever.

Page 5 Code No.: 20599 E

18. (a) Explain the Jaeger's method of studying the effect of temperature of surface tension.

Or

- (b) Derive the expression for the terminal velocity of a sphere moving in a high viscous fluid using stokes force.
- 19. (a) Explain the laws of transverse vibrations of strings.

Or

- (b) Explain Melde's string method of determining the frequency of a tuning fork by longitudinal.
- 20. (a) Explain the production of ultrasonic waves by Piezo electric method.

Or

(b) Explain the production of ultrasonic waves by magnetostriction method.

Page 6 Code No.: 20599 E