(6 pages)

Reg. No.:

Sub. Code: EMPH 21 Code No.: 20600 E

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2025.

Second Semester

Physics - Core

HEAT, THERMODYNAMICS AND STATISTICAL PHYSICS

(For those who joined in July 2023 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- The ratio of two specific heats of a diatomic gas is 1.
 - (a) 1.67
- (b) 1.40
- (c) 1.00
- (d) 2.00
- In Joule-Thomson effect, tempt of inversion is 2.
 - (a) $T_i = 2a/R.b$
- (b) $T_i = 2b/R.a$
- (c) $T_i = 4a/R.b$
- (d) $T_i = 4b/R.a$

- The efficiency of a Carnot's engine working between steam point and ice point is
 - (a) 1
- (b) 0
- (c) 26.81%
- (d) 16.81%
- The gas law PV/T = constant is true for
 - (a) isothermal change only
 - (b) adiabatic change only
 - (c) both (a) and (b)
 - (d) none of the above
- On T-S diagram, the carnot cycle is a
 - (a) Square
- (b) Rectangle
- (c) Parallelogram
- (d) None of the above
- Clausius-Calpeyron equation is

(a)
$$\frac{dP}{dQ} = L.(V_2 - V_1)$$

(a)
$$\frac{dP}{dT} = L.(V_2 - V_1)$$
 (b) $\frac{dP}{dT} = \frac{L}{T(V_2 - V_1)}$

(c)
$$\frac{dT}{dP} = \frac{L}{T}(V_2 - V_1)$$
 (d) $\frac{dP}{dT} = \frac{T}{L(V_2 - V_1)}$

(d)
$$\frac{dP}{dT} = \frac{T}{L(V_2 - V_1)}$$

- For a perfectly blackbody, the absorption power is . 7.
 - (a) 1
- (b) more than 1
- (c) less than 1
- (d) zero

Page 2 Code No.: 20600 E

8.	Weirs displacement low is
	triatanos = $T_N = (n)$
	(b) $\frac{1}{5} \cdot \frac{3}{7} = \text{constant}$

- (c) $\frac{\vec{\lambda}}{TV} = constant$
- (d) $\frac{\lambda T}{V} = constant$
- p The spin of photon is:
 - (a) zero
- (b) $\frac{1}{2}h$
- (c) h
- (d) 3
- 10 Paulis exclusion principle applies to _____
 - (a) M.B statistics
 - (b) B-E statistics
 - (c) F-I) statistics
 - (d) None of the above

Page 8 Code No. : 20600 E

PART B - (5 v 5 = 15 marks)

Answer ALL questions by choosing either (a) or (b). Each answer should not exceed 150 words.

- 11. (a) Write a short notes on
 - (i) Joule-Thomson effect
 - (iii) Temperature of inversion.

Or

- (h) Write a short notes on :
 - (i) Bayle's temperature
 - (ii) Jonle-Kelvin effect.
- 12. (a) Explain the working process of P-V diagram.

Ö

- (b) Write a short notes on : Carnots engine.
- (a) Define: Entropy. State its unit and explain its physical significance.

Or

(b) Explain the third law of thermodynamics.

Page 4 Code No. ; 20800 E [P.T.O.]

- 14. (a) Write a short notes on:
 - (i) Rayleigh-Jeam law
 - (ii) Planck's law of radiation.

Or

- (b) State and explain Stefan's law of heat radiation.
- (a) Define the term with suitable examples macrostate and microstate.

Or

- (b) Write a short notes on:
 - (i) Statistical ensemble
 - (ii) Canonical ensemble.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions by choosing either (a) or (b). Each answer should not exceed 600 words.

16. (a) Discuss the Regnault's method to find the specific heat of a gas at constant pressure.

Or

(b) Describe the porous plug experiment.

Page 5 Code No.: 20600 E

 (a) Explain the first law of thermodynamics. State its physical significance.

Or

- (b) State and prove P-V diagram.
- 18. (a) State and explain T-S diagram.

Or

- (b) Define: Entropy. Show that entropy remains constant in reversible process but increase in irreversible process.
- (a) Describe the Planck's law for energy distribution in black-body radiation.

Or

- (b) Discuss in detail Forbe's method to find the thermal conductivity of a good conductor.
- 20. (a) Discuss Maxwell-Boltzmann statistics.

Or

- (b) Write a short notes on:
 - (i) Quantum statistics
 - (ii) Classical statistics
 - (iii) Phase space.

Page 6 Code No.: 20600 E