(6 pages)	6 pages) Reg. No. :	
Code No.:	30745 E	Sub. Code: EMPH 21
B.Sc. (C		EE EXAMINATION, BER 2024
	Second 8	Semester
	Physics	Core
HEAT, THE		HCS AND STATISTICAL SICS
(For thos	e who joined	in July 2023 onwards)
Time: Three hours		Maximum : 75 marks
P.	RT A — (10	× 1 = 10 marks)
	Answer AL	L questions.
9	Choose the ec	prect answer.
1. The mole	cules of an id	eal gas have
(a) only	kinetic ener	ãi.

only potential energy

zero energy

both kinetic and potential energies

(b)

(c)

(d)

9.	In Joule-Thomson effect, temperature of the gas			
	(a)	increases		
	(b)	decreases		

- (e) sometimes increases
- none of the above
- The efficiency of Carnot's engine between 127°C 3. and 27°C is
 - 25% (a)
- 50%(b)
- 7596 (c)
- (d) 100%
- An engine works between the temperatures 300 K $\,$ and 30 K, What is its efficiency?
 - 50%(a)
- (b) 47%
- (e) 996
- 10% (d)
- According to Clausius theorem.

 - (a) $\oint \frac{dQ}{T} > 0$ (b) $\oint \frac{dQ}{T} < 0$
 - (e) $\oint \frac{dQ}{T} = \text{constant}$ (d) $\oint \frac{dQ}{T} = 0$

Page 2 Code No.: 30745 E

The second law of thermodynamics is 6.

(a)
$$\int \frac{dQ}{T} \ge 0$$

$$\int \frac{dQ}{T} \ge 0 \qquad (b) \qquad \oint \frac{dQ}{T} > 0$$

(c)
$$\int \frac{dQ}{T} < 0$$

(d)
$$\frac{dQ}{T} = 0$$

The speed of heat radiations is 7.

(b)
$$3 \times 10^8 \text{ cm.s}^{-1}$$

(c)
$$3 \times 10^8 \text{ m.s}^{-1}$$

(d)
$$3 \times 10^{-10} \text{ m.s}^{-1}$$

Stefan's-Boltzmann's law is

(a)
$$E = \sigma T^5$$

(b)
$$\lambda_m \cdot T = \text{Constant}$$

(c)
$$E = \sigma (T^4 - T_0^4)$$

(d)
$$E = \sigma T^4$$

- 9. particles obeying Maxwell-Boltzmann The Statistics are
 - Identical (a)
 - (b) Identical and indistinguishable
 - Distinguishable (c)
 - Photons
- From Fermi-Dirac Statistics, $n_i = ?$

(a)
$$g_i / e^{\alpha + \beta E_i} + 1$$

(b)
$$\frac{2g_i}{e^{\alpha+\beta E_i}+1}$$

(a)
$$g_i/e^{\alpha+\beta E_i}+1$$
 (b) $2g_i/e^{\alpha+\beta E_i}+1$ (c) $2g_i/e^{\alpha+\beta E_i}-1$ (d) $g_i/e^{\alpha+\beta E_i}-1$

(d)
$$g_i / e^{\alpha + \beta E_i} - 1$$

Page 3 Code No.: 30745 E

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions choosing either (a) or (b). Each answer should not exceed 250 words.

Explain the behaviour of real gases above and below the Boyle's temperature.

Or

- Write a short notes on: (b)
 - (i) Mayer's relation
 - Joule-Kelvin effect. (ii)
- 12, (a) State the zeroth law of Thermodynamics and explain it.

Or

- Write a short notes on : Heat engine. (b)
- 13. Explain the Second law of thermodynamics (a) and explain its significance.

Or

Calculate the efficiency of a heat engine (b) working between 127°C and 27°C.

> Page 4 Code No.: 30745 E [0.T.9]

- 14. (a) Write a short notes on:
 - (i) Stefan's law
 - (ii) Wien's law.

Or

- (b) State and explain Rayleigh-Jean's law.
- 15. (a) Define: Microstate and Macrostate. Explain with suitable examples.

Or

(b) Explain the term phase space.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions choosing either (a) or (b). Each answer should not exceed 600 words.

(a) Describe the Joly's method for determination of Cv.

Or

- (b) Discuss the liquefaction of gases by Linde's process.
- 17. (a) Discuss the concept of first law of thermodynamics. State its significance.

Or

(b) Explain the working of Carnot's engine.

Page 5 Code No.: 30745 E

18. (a) State and prove Clasius-Clapeyron's equation.

Or

- (b) State and explain the third law of thermodynamics.
- (a) Define: Wien's law. Discuss the Wien's law of distribution for short wavelength.

Or

- (b) Describe the Lee's disc method to find the thermal conductivity of a bad conductor.
- 20. (a) Discuss Maxwell-Boltzmann Statistics.

Or

(b) Compare the basic postulates of M-B, B-E and F-D statistics.

Page 6 Code No.: 30745 E