(7 pages)

Reg. No.:....

Code No.: 20602 E Sub. Code: EMPH 41

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2025.

Fourth Semester

Physics - Core

OPTICS AND LASER PHYSICS

(For those who joined in July 2023 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- The inability of a lens to form a white image of a white object is known as
 - (a) spherical aberration
 - (b) chromatic aberration
 - (c) monochromatic aberration
 - (d) coma

2. I	Huvgen's	eyepiece	is a	lso	known	as	
------	----------	----------	------	-----	-------	----	--

- (a) spherical eyepiece
- (b) positive eyepiece
- (c) negative eyepiece
- (d) double eyepiece
- 3. Which of the following does not show any interference pattern?
 - (a) Wedge shaped film
 - (b) Excessively thin film
 - (c) A thick film
 - (d) Soap bubble
- 4. The shape of the fringes observed in interference is
 - (a) straight
- b) circular
- (c) hyperbolic
- d) elliptical
- 5. The zone plate behaves like a
 - (a) concave lens with multiple foci
 - (b) convex lens with multiple foci
 - (c) convex lens with single foci
 - (d) concave lens with single foci

Page 2 Code No. : 20602 E

- 6. In a single slit diffraction pattern intensity and width of fringes are
 - (a) unequal width
 - (b) equal width
 - (c) equal width and equal intensity
 - (d) unequal width and unequal intensity
- A plate which induces the desired amount of phase difference between two rays is known as
 - (a) polaroid
 - (b) phasor plates
 - (c) quartz plates
 - (d) retardation plates
- 8. If the phase difference between two rays is $\frac{\pi}{2}$ and the angle of incidence is equal to $\frac{\pi}{4}$ the emergent light is
 - (a) Linearly polarized
 - (b) Elliptically polarized
 - (c) · Circularly polarized
 - (d) Non polarized

Page 3 Code No.: 20602 E

- 9. An example of optical pumping
 - (a) Ruby laser
 - (b) Helium-Neon laser
 - (c) Semiconductor laser
 - (d) Dye laser
- In the CO₂ molecular gas laser, transition takes place between the
 - (a) molecular states
 - (b) atomic states
 - (c) vibrational states
 - (d) energy states

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 250 words.

11. (a) Describe about spherical aberration. How can spherical aberration defect be removed?

Or

(b) Explain construction and working of Huygen's eyepiece.

Page 4 Code No. : 20602 E [P.T.O.]

12. (a) Explain the testing of plainness of a glass surface using air-wedge.

Or

- (b) Describe Michelson interferometer and show how it can be used for measuring the wavelength of any line in a spectrum.
- 13. (a) What is a zone plate? Explain the theory of construction of a zone plate.

Or

- (b) Explain the resolving power and dispersive power of a grating.
- 14. (a) Explain the working of a Half wave plate.

Or

- (b) Write about optical activity of a substance and Fresnel's explanation of optical rotation.
- 15. (a) Explain with neat diagram absorption, spontaneous emission and stimulated emission of radiation.

Or

(b) Explain the principle and working of ${\rm CO_2}$ laser.

Page 5 Code No.: 20602 E

PART C - (5 \times 8 = 40 marks)

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 600 words.

16. (a) Explain the methods of minimizing spherical aberration and chromatic aberration.

Or

- (b) Explain refraction through a thin prism.
- 17. (a) Obtain the path difference and the condition for maxima and minima for thin film interference due to reflected light.

Or

- (b) What are Newton's rings and how are they formed? Explain.
- 18. (a) Explain the rectilinear propagation of light using Fresnel's assumption.

Or

(b) Write differences between a zone plate and a convex lens.

Page 6 Code No.: 20602 E

 (a) Give an account of double refraction in uniaxial crystals.

0

- (b) Explain the production and detection of plane and circularly polarized light.
- 20. (a) Establish the relation between Einstein's coefficients.

Or

(b) Explain the principle and working of a He-Ne laser.

Page 7 Code No.: 20602 E