(8 pages)

Reg. No.	:	·····
----------	---	-------

Code No.: 5436

Sub. Code: WPHE 23

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2025.

Second Semester

Physics

Elective - NONLINEAR DYNAMICS

(For those who joined in July 2023 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(15 \times 1 = 15 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- Which one of the following is an example of nonlinear dynamical system?
 - (a) damped harmonic oscillator
 - (b) three dimensional isotropic harmonic oscillator
 - (c) anharmonic oscillator
 - (d) both (a) and (b)

2.	The presence	of indepe	ndent v	ariable	in the
	differential	equation	does	not	affect
	the	_ nature.			
	(a) linearity	21			
	(b) nonlineari	tv			

- (c) linearity/nonlinearity
- (d) none
- An example of autonomous systems is
 - (a) driven pendulum
 - (b) driven vander pol oscillator
 - driven linear oscillator
 - (d) an exponential oscillator
- The Kdv equation is
 - (a) non linear dispersive wave equation
 - (b) linear dispersive wave equation
 - (c) linear non dispersive wave equation
 - (d) all of the above

Page 2 Code No.: 5436

- When a radio station broadcasts its signals, the electromagnetic energy from its transmitter radiates outward in an identical fashion is an example of
 - (a) linear dispersive wave
 - (b) linear nondispersive wave
 - (c) autonomous wave
 - (d) both (a) and (b)
- A solitary wave which preserves its identity even after collision with another solitary wave is called
 - (a) proton
- (b) electron
- (c) soliton
- (d) neutron
- 7. The tuning fork-like appearance of the bifurcation diagram is called
 - (a) Hopf bifurcation
 - (b) Saddle-node bifurcation
 - (c) Pitchfork bifurcation
 - (d) Transcritical bifurcation
- 8. In a subcritical Hopf bifurcation, the bifurcated limit cycle will be
 - (a) unstable
 - (b) stable
 - (c) either unstable or stable
 - (d) none

Page 3 Code No.: 5436

- 9. Which one is the last step in the quasiperiodic route to chaos?
 - (a) stable limit cycle
 - (b) stable equilibrium point
 - (c) quasiperiodic orbit
 - (d) chaotic orbit
- 10. In the bifurcation phenomena of the double well Duffing oscillator if the value of f is 0.355 < f < 0.3577, the nature of solution is
 - (a) period T oscillation
 - (b) period 2T oscillation
 - (c) period 4T oscillation
 - (d) one band chaos
- 11. The term fractal was coined by
 - (a) Sierpinski
 - (b) Georg cantor
 - (c) Gaston Julia
 - (d) Mandelbrot
- 12. The dimension of Koch curve fractal is
 - (a) 1.2618

(b) 0.631

(c) 2.5

(d) 0.012

Page 4 Code No.: 5436

[P.T.O.]

13.	Light amplification in allows intercontinent 10 billion bits per secon	glass fibe		
	(a) Silica doped	(b)	Erobium-doped	
	(c) Germanium doped	(d)	zinc Doped	
14.	The ISM band operates	bout		
	(a) 1 MHz	(b)	2.4 GHz	

- 2.4 GHz
- 2.5 MHz (c)
- (d) 3 Hz
- A reliable and preferable cryptographic system can be obtained when the secret key k is
 - (a) As random as possible
 - (b) Not smaller than the size of the message
 - Available to both sender and receiver Simultaneously
 - (d) All of the above

PART B —
$$(5 \times 4 = 20 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 250 words.

Discuss the free oscillations and damped oscillations of damped and driven nonlinear oscillators.

Or

(b) Write the stable node/star classification of equilibrium points.

> Code No.: 5436 Page 5

17. (a) Write a note on solitons.

Or

- (b) Show that the behavior of wave as a function of wave number in linear dispersive wave propagation.
- 18. (a) Write a note on limit cycle motion.

- (b) What bifurcations? Explain the saddle/node bifurcation.
- 19. (a) Explain the period doubling route to chaos in the Duffing oscillator.

- (b) Write any four applications of fractals.
- 20. (a) Write a note on Chaos based communication.

Or

(b) With the neat schematic diagram explain the soliton based -communication system.

> Page 6 Code No.: 5436

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b) Each answer should not exceed 600 words.

21. (a) Explain the various linear oscillators.

Or

- (b) Explain forced oscillations, primary resonance jump phenomenon with the frequency response curve.
- (a) Derive the general solution of Kdv equation Cnoidal and solitary Waves.

Or

- (b) Explain the backlund transformation with the necessary equations.
- (a) Explain (i) discrete dynamical systems
 (ii) how the logistic map is useful in the development of the theory of chaos.

Or

(b) What is strange attractor? Explain self-similar structure.

Page 7 Code No.: 5436

24. (a) Draw the mechanical model of the Duffing equation and explain the bifurcation scenario in Duffing oscillator.

Or

- (b) What is fractal? Explain the construction and properties of middle third contor set and Koch curve.
- (a) What is stochastic resonance? Explain with necessary equations and diagram.

Or

(b) Explain the elementary chaotic cryptographic system.

Page 8 Code No.: 5436