Reg.	No.	•	***************************************
------	-----	---	---

Code No.: 7809 Sub. Code: WPHE 31

M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2024

Third Semester

Physics

Elective V — SPECTROSCOPY

(For those who joined in July 2023 onwards)

Time: Three hours

Maximum: 75 marks

PART A - (15 × 1 = 15 marks)

Answer ALL questions.

Choose the correct answer:

- The rotational spectra of a homonuclear diatomic molecule:
 - (a) Is visible in the microwave region
 - (b) Is visible in the infrared region -
 - (c) Is absent due to the lack of a permanent dipole moment
 - (d) Appears as a continuous spectrum

- The rotational spectra of diatomic molecules provide information about:
 - (a) The bond length of the molecule
 - (b) The mass of the molecule
 - (c) The electronic structure of the molecule
 - (d) The temperature of the gas
- The rotational spectrum of a diatomic molecule typically appears in the:
 - (a) Ultraviolet region
 - (b) Visible region
 - (c) Infrared region
 - (d) Microwave region
- A diatomic vibrating rotator model takes into account:
 - (a) Rotational transitions only
 - (b) Vibrational transitions only
 - (c) Both rotational and vibrational transitions
 - (d) Only electronic transitions

Page 2 Code No.: 7809

 In the diatomic vibrating rotator model, the vibrational energy levels are given by the expression

(a)
$$E_v = hv_0 \left(v + \frac{1}{2} \right)$$

(b)
$$E_v = hv_0v$$

(c)
$$E_v = J(J+1)\frac{h^2}{8\pi^2 I}$$

(d)
$$E_v = \frac{hc}{\lambda}$$

6. The rotational energy levels in the diatomic vibrating rotator model are given by

(a)
$$E_v = hv_0 \left(v + \frac{1}{2} \right) .$$

(b)
$$E_v = h v_0 v$$

(c)
$$E_v = J(J+1)\frac{h^2}{8\pi^2 I}$$

(d)
$$E_v = \frac{hc}{\lambda}$$

Page 3 Code No.: 7809

- 7. For a linear molecule, the spacing between adjacent lines in the rotational Raman spectrum is:
 - (a) Constant and equal to 4B
 - (b) Constant and equal to 2B
 - (c) Variable and depends on J
 - (d) Randomly distributed
- 8. The rotational Raman spectra can be observed for molecules that:
 - (a) Have a permanent dipole moment
 - (b) Are homonuclear or heteronuclear with anisotropic polarizability
 - (c) Are only heteronuclear
 - (d) Are only homonuclear
- The rotational constant B of a diatomic molecule can be determined from the Raman spectrum by:
 - (a) Measuring the difference between successive peaks in the spectrum
 - (b) Identifying the position of the central peak
 - (c) Calculating the energy difference between vibrational modes
 - (d) Identifying the electronic transitions

- 10. In the chemical industry, NMR spectroscopy can be used for monitoring reactions by:
 - (a) Measuring energy absorption
 - (b) Identifying the disappearance of reactants and the formation of products
 - (c) Estimating the temperature change during reactions
 - (d) Measuring viscosity changes
- 11. The Larmor frequency in NMR depends on:
 - (a) The type of solvent used
 - (b) The external magnetic field strength and the type of nucleus
 - (c) The temperature of the sample
 - (d) The molecular weight of the compound
- 12. The splitting of NMR peaks due to spin-spin coupling provides information about:
 - (a) The number of protons on neighboring atoms
 - (b) The energy levels of electrons
 - (c) The polarity of the solvent
 - d) The molecular weight of the compound

Page 5 Code No.: 7809

Page 4 Code No.: 7809

- 13. The working principle of a double beam UV spectrophotometer is based on:
 - (a) Beer-Lambert's law
 - (b) Einstein's photoelectric effect
 - (c) Newton's law of cooling
 - (d) Heisenberg's uncertainty principle
- 14. The detectors used in a double beam UV spectrophotometer are typically:
 - (a) Thermocouples
 - (b) Photodiodes or photomultiplier tubes
 - (c) Scintillation counters
 - (d) Light-emitting diodes (LEDs)
- 15. In a double beam UV spectrophotometer, monochromators are used to:
 - (a) Focus the light beam
 - (b) Split the light into sample and reference beams
 - (c) Select specific wavelengths of light
 - (d) Measure the absorbance of the sample

Page 6 Code No.: 7809

PART B - (5 × 4 = 20 marks)

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 250 words.

16. (a) Give the theory of diatomic molecule as non-rigid rotator.

Or

- (b) Explain the intensity of spectral lines.
- 17. (a) The frequency of OH stretching vibration in CH₃OH is 3300 cm⁻¹, Estimate the frequency of OD stretching vibrating in CH₃OD.

Or

- (b) Explain the effect of anharmonicity on the vibrational spectra of diatomic molecules.
- 18. (a) Explain the quantum theory of Raman effect.

Or

(b) If the bond length of H_2 is 0.07417 nm, What would be the positions of the first three rotational Raman lines in the spectrum? What is the effect of nuclear spin on the spectrum? $H = 1.673 \times 10^{-27} \text{ Kg}$.

Page 7 Code No.: 7809

19. (a) Define chemical shift. Distinguish between δ and τ chemical shifts.

Or

- (b) Explain the principle of ESR.
- (a) Mention some simple applications of UV spectroscopy.

Or

(b) What do you understand solar in organic compounds?

PART C - (5 \times 8 = 40 marks)

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 600 words.

21. (a) Give the theory of rotational spectra of diatomic molecules.

Or

(b) With a neat diagram explain the microwave Spectrometer.

Page 8 Code No.: 7809

22. (a) Explain the theory of Fourier transform IR Spectroscopy.

Or

- (b) Give the theory of diatomic vibrating rotator in IR Spectroscopy.
- 23. (a) Explain the surface Enhanced Raman Spectroscopy.

Or

- (b) With a neat block diagram explain the Raman Spectrometer.
- 24. (a) With a neat block diagram explain the ESR Spectrometer.

Or

- (b) Explain the following:
 - (i) Proton NMR spectrum of 1-Nitropropane
 - (ii) Proton spectrum of methyl Ethyl ketone.

Page 9 Code No.: 7809

(a) Discuss in detail color in organic compounds.

Or

(b) With block diagram explain the double beam UV Spectrophotometer.

Page 10 Code No. : 7809