(8 pages)

Reg. No.:

Code No.: 5462

Sub. Code: WPHM 42

M.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2025.

Fourth Semester

Physics - Core

ELECTROMAGNETIC THEORY

(For those who joined in July 2023 onwards)

Time: Three hours

Maximum: 75 marks

PART A — $(15 \times 1 = 15 \text{ marks})$

Answer ALL questions.

Choose the correct answer:

- A boundary value problem for the Laplace equation requires:
 - (a) The value of the function at a single point
 - (b) The value of the function on the boundary of the domain
 - (c) The value of the function at infinity
 - (d) The value of the function at the center of the

- 2. The Laplace equation in two dimensions is given by:
 - (a) $\partial^2 u / \partial x^2 + \partial^2 u / \partial y^2 = 0$
 - (b) $\partial^2 u / \partial x^2 \partial^2 u / \partial y^2 = 0$
 - (c) $\partial u / \partial x + \partial u / \partial y = 0$
 - (d) $\partial^2 u / \partial x^2 + \partial^2 u / \partial y^2 = 1$
- 3. Which of the following is a common method for solving the Laplace equation with given boundary conditions?
 - (a) Fourier series
 - (b) Laplace transforms
 - (c) Separation of variables
 - (d) All of the above
- 4. The coercivity of a material is:
 - (a) the magnetic field required to demagnetize the material
 - (b) a measure of the materials resistance to demagnetization

Page 2

- (c) both (a) and (b)
- (d) none of the above

Code No.: 5462

- 5. The magnetic hysteresis loop:
 - (a) shows the relationship between the magnetic field and the magnetization of a material
 - (b) is used to determine the coercivity and retentivity of a material
 - (c) both (a) and (b)
 - (d) none of the above
- 6. The relative permeability of a material is:
 - (a) the ratio of the permeability of the material to the permeability of free space
 - (b) a dimensionless quantity
 - (c) both (a) and (b)
 - (d) none of the above
- 7. What fundamental concept did Maxwell's equations unify?
 - (a) Electricity and magnetism
 - (b) Space and time
 - (c) Energy and matter
 - (d) Gravity and electromagnetism

Page 3 Code No.: 5462

- 8. The cutoff frequency of a rectangular waveguide depends on:
 - (a) The dimensions of the waveguide
 - (b) The dielectric material filling the waveguide-
 - (c) The mode of propagation
 - (d) All of the above
- 9. The dominant mode in a rectangular waveguide is the mode with the:
 - (a) Highest cutoff frequency
 - (b) Lowest cutoff frequency
 - (c) Highest wavelength
 - (d) Lowest wavelength
- 10. Which of the following modes can propagate in a rectangular waveguide?
 - (a) TEM
- (b) TM
- (c) TE
- (d) Both TM and TE
- 11. What is the primary restoring force for Alfvén waves?
 - (a) Magnetic tension
- (b) Fluid pressure
- (c) Gravity
- (d) Surface tension

Page 4 Code No.: 5462

[P.T.O.]

- 12. Which of the following is NOT a type of MHD wave?
 - (a) Alfvén waves
 - (b) Magnetosonic waves
 - (c) Langmuir waves
 - (d) Slow waves
- 13. What are Magnetohydrodynamic (MHD) waves?
 - (a) Electromagnetic waves propagating through a conducting fluid
 - (b) Sound waves propagating through a magnetic field
 - (c) Gravity waves propagating through a plasma
 - (d) Surface waves propagating along a fluidvacuum interface
- 14. The Boltzmaim equation is a cornerstone of:
 - (a) Classical mechanics
 - (b) Statistical mechanics
 - (c) Quantum mechanics
 - (d) Thermodynamics

Page 5 Code No.: 5462

- 15. The Boltzmann equation can be used to study:
 - (a) Rarefied gas flows
 - (b) Plasma physics
 - (c) Neutron transport
 - (d) All of the above

PART B — $(5 \times 4 = 20 \text{ marks})$

Answer ALL questions, choosing either (a) or (b). Each answer should not exceed 250 words.

16. (a) State and prove uniqueness theorem.

Or

- (b) Derive an expression for electrostatic energy in dielectric media.
- 17. (a) State and explain Ampere's law in magnetostatics.

Or

(b) Find the vector potential of an infinite solenoid with n turns per length, radius R and current I.

Page 6 Code No.: 5462

 (a) State and explain Faraday's laws of electromagnetic induction.

Or

- (b) Discuss in detail Gauge invariance.
- (a) Explain the plane waves in non-conducting media.

Or

- (b) Obtain the inhomogeneous wave equation and retarded potentials.
- 20. (a) Derive the Boltzmann equation.

Or

(b) Explain the plasma confinement in a magnetic field.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b) Each answer should not exceed 600 words.

 (a) Obtain the solution of Laplace equation in cartesian coordinates.

. Or

(b) Discuss about molecular polarizability and electric susceptibility.

Page 7 Code No.: 5462

22. (a) Discuss about magnetostatic energy.

Or

- (b) Explain the magnetic induction and magnetic field in macroscopic media.
- 23. (a) Derive Maxwell's wave equations.

Or

- (b) State and explain poynting's theorem.
- 24. (a) Discuss about radiation from a localised source.

Or

- (b) Explain the propagation of TE waves in a rectangular wave guide and hence obtain an expression for cutoff frequency and group velocity.
- 25. (a) Obtain the simplified magneto hydrodynamic equations.

Or

(b) Explain the Alfvén waves and magneto sonic waves.

Page 8 Code No.: 5462