(7	pages)	Reg. No. :	, e	3.	If the net externation then	al force ac	ting on a system is zero,	
Co	de No. : 7805	Sub. Code: WPHSE 21			(a) $P = consta$	nt (b	$\omega = constant$	
	Ma (anga) n	TOTAL TRANSPORT	ÿ		(c) a = constant	, (d) L = constant	
M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2024. Second Semester			4	4.	In a system, there is no exchange of			
					matter, but exchange of energy is possible between the system and its surroundings.			
	Physics — Sk	ill Enhancement Course	*		(a) isolated	(b)	closed	
PHYSICS FOR COMPETITIVE EXAMINATIONS				(c) adiabatic	(d)	open		
(For those who joined in July 2023 onwards)				5,	Which of the follo	wing is an	intensive variable?	
Time: Three hours Maximum: 75 marks				(a) Internal ener	rgy (b)	Temperature		
		(15 × 1 = 15 marks) r ALL questions.			(c) Mass	(d)	Volume	
	Choose the correct answer:		7	6.	At what temper higher	ature, the	e density of water is	
1.	The dimensiona Gravitational cons	l formula for G (Universal stant)		*	(a) 0°C	(b)	100°C	
	(a) $M^{-2}L^3T^{-2}$	(b) $M^{-1}L^3T^{-2}$			(c) 4°C	(d)	–273°C	
2.	(c) $M^{-1}L^2T^{-2}$	(d) $M^{-2}L^3T^{-1}$					ng colours of the rainbow has	
	Resistance of a fluid to change the motion and shape is				the shortest wavelength			
					(a) Violet	(b)	Blue	
	(a) Surface tensi	=	7		(c) Indigo	(d)	Yellow	
	(c) Viscocity	(d) Resistivity					e .	
						Page 2	Code No.: 7805	

8.	Above to painful to human ea	he noise becomes physically rs.		laws of physics are same in		
	(a) 50 d.3 (c) 30 dB	(b) 80 dB (d) 100 dB		 (a) Every inertial frame of reference (b) Every non-inertial frame of reference (c) All frames of reference 		
9.	For a sound wave, the speed is 352 wavelength of the w		14.	(d) Never been same The mean life time of a radio nuclide, if its activity decreases by 4% for every one hour would be		
	(a) 0.4 m (c) 0.25 m	(b) 0.03 m (d) 0.04 m		(product is non-radioactive) (a) 25 hrs (b) 1.042 hrs		
10.	If symmetry is pre- easiest method to fi	esent, then is the nd the electric field.		(c) 2 hrs (d) 30 hrs The stopping potential for a photoelectric emission		
	(a) Coulomb's law(c) Lorentz law	(b) Gauss' law (d) Faraday's law		process is 10V. Find the maximum kinetic energy of the electrons ejected in the process		
11.	The magnetic field current is	at the center due to a circular		(a) $3.2 \times 10^{-19} J$ (b) $1.6 \times 10^{-19} J$ (c) $3.6 \times 10^{-18} J$ (d) Zero		
	(a) $4\mu_0 i / a$ (c) $\mu_0 i / 4a$	(b) $2\mu_0 i / a$ (d) $\mu_0 i / 2a$	A	PART B — $(5 \times 4 = 20 \text{ marks})$ nswer ALL questions, choosing either (a) or (b). Each answer should not exceed 250 words.		
12.	The magnetic induction at a point 4cm from a long current carrying wires is 10 ³ T, the magnetic field induction at a distance of 2cm from the same current carrying wire will be		16.	(a) Derive an expression for the frequency of simple harmonic motion. Or		
	(a) 2×10^{-4} T (c) 3×10^{-3} T	(b) 2×10^{-3} T (d) 4×10^{-3} T	• .	(b) State and explain the laws of planetary motion.		
		Page 3 Code No.: 7805	- 5	Page 4 Code No.: 7805		

[P.T.O]

17. (a) Discuss about blackbody radiation.

Or

- (b) Write short notes on the law of equipartition of energy.
- (a) Explain the phenomenon of diffraction by a single slit experiment.

Or

- (b) Write a short note on resonance.
- 19. (a) The average distance r between the electron and the proton in the hydrogen atom is 5.3×10^{-11} m. What is the magnitude of the average electrostatic force that acts between these two particles?

. Or

- (b) Two long, straight wires carrying electric currents 10 A in opposite directions the separation between the wires is 5 cm. Find the magnetic field at a point P midway between the wires.
- 20. (a) Describe briefly about matter waves and obtain an expression for the de-Broglie wavelength of a particle.

Or

(b) Derive an expression for Lorentz-Fitzgerald length contraction.

Page 5 Code No.: 7805

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b) Each answer should not exceed 600 words.

21. (a) State Newton's law of gravitation. Derive the equation for gravitational force and use it to determine the mass of the Earth.

Or

- (b) Derive an expression for co-efficient of viscosity of a liquid by Poiseuille's method.
- 22. (a) Explain (i) Charle's law and (ii) Boyle's law.

Or

- (b) State and explain Wien's displacement law.
- 23. (a) Explain the Young's double slit interference method. Obtain an expression for bandwidth.

Or

- b) Verify the laws of vibrating strings.
- 24. (a) Discuss any two applications of Gauss' law.

Or

- (b) (i) A long solenoid is formed by winding 20 turns per cm. What current is necessary to produced a magnetic field of 20 mT inside the solenoid?
 - (ii) Explain the magnetic field observed in a toroid.

Page 6 Code No.: 7805

25. (a) Explain Compton scattering and obtain the expression for the Compton shift.

Or

- (b) A hypothetical train moving with a speed of 0.6 c passes by the platform of a small station without being slowed down. The observers on the platform note that the length of the train is just equal to the length of the platform which is 200 m.
 - (i) Find the rest length of the train
 - (ii) Find the length of the platform as measured by the observers in the train.

Page 7 Code No.: 7805