(8 pages)	2.	The application of Gauss Elimination method is to solve
Reg. No. :		(a) linear equations
Code No.: 7398 Sub. Code: ZPH	М 34	(b) nonlinear equations
M.Sc. (CBCS) DEGREE EXAMINATION, NOVEMBER 2024.		(c) quatratic equations (d) none of the above
Third Semester	3.	The bisection method is used to find the of a polynomial equation.
Physics - Core		(a) intervals (b) roots
NUMERICAL METHODS AND PROGRAMMING IN C++		(c) rows (d) columns
(For those who joined in July 2021 and 2022 only	4. v)	Which interpolation formula is used to solve unequally spaced data?
Time : Three hours Maximum : 75 m		(a) Newtons interpolation formula
PART A — $(10 \times 1 = 10 \text{ marks})$		(b) Lagrange's interpolation formula
Answer ALL questions.		(c) Forward interpolation formula
Choose the correct answer:	* 1 2	(d) All the above
1. Find a root of the equation $xe^x = 1$.	5.	The truncation error in the fourth order Runge – Kutta method is of the order of
(a) 0.56 (b) 0.72		(a) h^3 (b) h^4
(c) 0.32 (d) e^{-x}		(c) h^2 (d) h^5
	**	Page 2 Code No. : 7398

Laplace equation is the —	
---	--

- (a) First order partial derivative
- (b) Differential partial derivative
- (c) Second order partial derivative
- (d) All the above

7. The concept of taylors series was formulated by

- (a) Gregory Nelson
- (b) Newton
- (c) James Gregory
- (d) None

8. What is the difference between Simpson's
$$\frac{1}{3}$$
 rule and $\frac{3}{3}$ rule?

and
$$\frac{3}{8}$$
 rule?

- (a) interpolant is cubic polynomial
- (b) interpolant is variable
- (c) interpolant is quatratic polynomial
- (d) All the above
- 9. What is the insertion operator in C++?
 - (a) <<
- (b) >>
- (c) <
- (d) >

Page 3 Code No.: 7398

- (a) negative numbers
- (b) non negative numbers
- (c) float
- (d) none

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 250 words.

 (a) Solve the following system by Gauss-Jordan method.

$$2x + y + z = 10$$

$$3x + 2y + 3z = 18$$

$$x + 4y + 9z = 16$$

Or

(b) Solve the equations by Gauss Elimination method.

$$10x_1 - x_2 + 2x_3 = 4$$

$$x_1 + 10x_2 - x_3 = 3$$

$$2x_1 + 3x_2 + 20x_3 = 7$$

Page 4 Code No.: 7398

[P.T.O.]

12. (a) Certain experimental values of x and y are given below.

x 0 2 5 7

У 1 5 12 20

If $y = a_0 + a_1 x$ find the approximate values of a_0 and a_1 .

Or

(b) From the following table of values x and y obtain dy/dx for x=1.5 using Newton's forward difference formula.

x 1.5 2 2.5 3 3.5 4.

- y 3.375 7.000 13.625 24.000 38.875 59.000
- 13. (a) Evaluate $\int_0^1 \frac{1}{(1+x)} dx$ correct to 3 decimal places the values of x and y are tabulated as follows.

x = 0.5 1.0

y 1 0.6667 0.5

using Tripizoidal rule.

Or

(b) Using Simpson's 3/8 rule, evaluate $\left(\frac{1}{1+x^2}\right)$ at h = 0.5

x 0 0.5 1 1.5 2 2.5

2.5

 $y = \frac{1}{1+x^2}$ 1 0.8 1.5 0.307692 0.2 0.137931034 0.1

Page 5 Code No.: 7398

14. (a) Using modified Euler's formula, solve the differential equation y' = -y with the condition y(0) = 1, h = 0.01, solve the equation at x = 0.01, x = 0.02, x = 0.03 and x = 0.04.

Or

- (b) Find the solution of the differential equation $y' = y^2$ with the condition y(0) = 1 at x = 0.01. Using Taylor's series.
- 15. (a) Write a C++ program for charging and discharging of a condenser using Euler's method.

Or

(b) Write a programme for radioactive decay using Range-Kutta method.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions choosing either (a) or (b). Each answer should not exceed 600 words.

16. (a) Find a real root of the equation $x = e^{-x}$, using the Newton Raphson method.

Or

(b) Solve the following system by Gauss-Jordan method.

 $2x_1 + 4x_2 + x_3 = 3$

 $3x_1 + 2x_2 - 2x_3 = -2$

 $x_1 - x_2 + x_3 = 6$

Page 6 Code No.: 7398

17. (a) From the following data calculate the difference and obtain the forward and backward difference polynomials. Interpolate at x = 0.25 and x = 0.35.

x 0.1 0.2 0.3 0.4 0.5 y 1.4 1.56 1.76 2.0 2.28

Or

- (b) Find the polynomial of degree 2 or less such that f(0)=1; f(1)=33, f(3)=55. Using the Newton divided difference interpolation method.
- 18. (a) Find the cubic polynomial which takes the following values.

y(0) = 1, y(1) = 0, y(2) = 1 and y(3) = 10. Hence obtain y(4).

Or

(b) The velocity of the particle at a distance s from a point on its path is given by the following table. Estimate the time taken to travel 60 feet. using Simpson's $\frac{1}{3}$ rule.

x/ft 0 10 20 30 40 50 60 V/ft/sec 47 58 64 65 61 52 38 19. (a) Solve $\frac{dy}{dx} = yz + x$; $\frac{dz}{dx} = xz + y$. Given that $y_0 = 1$, $z_0 = -1$ for y(0.2), z(0.2) and h = 0.1. Using Runge-Kutta method.

Or

- (b) Solve y'' = xy' y; $y_{(0)} = 3$, $y'_{(0)} = 0$ to calculate y(0.1) using Runge-Kutta method.
- 20. (a) Write the programme for currents in a wheatstone's bridge.

Or

(b) Evaluate the area under the curve using Monte-Carlo method.

Page 7 Code No.: 7398

Page 8 Code No. : 7398