	logical operation is
(7 pages) Reg. No.:	2. Which of the following logical operation is represented by the + sin n in Boolean algebra?
de No.: 41216 E Sub. Code: JACS 21/ JASE 21	(a) AND (b) OR
	(c) NOT (d) Inversion
B.Sc. (CBCS). DEGREE EXAMINATION, APRIL 2019.	3. Which of the examples below expresses the commutative Law of Multiplication?
Second Semester	(a) $A + B = B + A$ (b) $A \cdot B = B + A$
Computer Science/Software Engineering - Allied	(c) $A \cdot B = B \cdot A$ (d) $A + B = B \cdot A$
DIGITAL DESIGN	4. The distributive Law, A(B+C)=
(For those who joined in July 2016 only)	(a) $(A+B)+C$ (b) $AB+AC$
Time: Three hours Maximum: 75 marks	(c) $A + (B + C)$ (d) $AB \cdot AC$
PART A — $(10 \times 1 = 10 \text{ marks})$	5 are useful for decimal displays.
Answer ALL questions.	(a) Encoders
Choose the correct answer:	(b) Seven - Segment decoders
	(c) Multiplexers
1. (171) ₁₀ is equivalent to ———.	(d) None
(a) $(FD)_{16}$ (b) $(AA)_{16}$	6. A multiplexer with 4-bit data, selects input as a
(c) (AB) ₁₆ (d) (AC) ₁₆	(a) 4:1 (b) 2:1
	(c) 16:1 (d) 8:1
	Page 2 Code No. : 41216 E

7.	The 2's complement representation of -10 is		PART B — (5 × 5 = 25 marks)
	(a) 00001010 (b) 00000110	Answer ALL questions, choosing either (a) or (b).	
	(c) 1111 0110 (d) 1111 1010	11. (a	
8.	The functional difference between RS and JK flip is that	(b	What do you mean by positive and Negative Logic? Explain.
	(a) JK flip-flop is faster than RS flip-flop	12. (a	
	(b) JK flip-flop has a feedback path	(b	Or Discuss about Don't Care Conditions.
	(c) JK flip-flop accepts both inputs 1 (d) None of then	13. (a	
).	Ripple counters are also called as ———.		(i) +5 (ii) -15
	(a) Asynchronous conunter		(iii) -23
	(b) Synchronous counter		(iv) -45
	(c) SSI counter		(v) 75
	(d) VLSI counter		Also convert the answer to hexadecimal from.
0.	An asynchronous 4-bit binary down counter changes from count 2 to count 3. How many transitional state are required?		Or
		(b)	The following hexadecimal numbers represent sign — magnitude numbers. Convert each to its decimal equivalent.
	(a) Six (b) Two	ST COM	(i) (FF) ₁₆
	(c) Four (d) Fifteen	2	(ii) (8F) ₁₆ .
	Page 3 Code No. : 41216 E		Page 4 Code No. : 41216 E

Code No.: 41216 E

[P.T.O.]

Code 140. : 41216 E

14. (a) Describe RS Flip Flops.

Or

- (b) Discuss about Universal Shift Register.
- 15. (a) What is Decoding Gates? Explain.

Or

- (b) Define:
 - (i) Asynchronous counter
 - (ii) Synchronous counter.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

- 16. (a) Convert the following:
 - (i) (110111011)₂ to Decimal
 - (ii) (155)₁₀ to Binary
 - (iii) (4574)₁₀ to Octal
 - (iv) (1235)10 to Hexa decimal.

Or

- (b) Convert the following:
 - (i) (FFA)₁₆ to Binary
 - (ii) (324)₈ to Decimal
 - (iii) (256)₁₀ to Binary
 - (iv) (111000101010)₂ to Hexa decimal.

Page 5 Code No.: 41216 E

17. (a) Explain Karnaugh Maps with Two, Three and Four variable map examples.

Or

- (b) Explain Pairs, Quads and Octets with Algebraic Proof.
- 18. (a) Explain about Multiplexers and De-Multiplexers.

Or

- (b) Explain Seven Segment Decoders with diagram.
- 19. (a) Explain JK Flip Flops.

Or

- (b) Explain the Types of Registers in detail.
- 20. (a) Explain Ripple counter with block diagram.

Or

(b) Describe Synchronous Counter.